GEOMETRIC NONLINEARITIES IN UNBRACED
MULTISTORY FRAMES

By Shu-Ming A. Lai* and James G. MacGregor,® F. ASCE

ARgTRACT: The geometric nonlinearities in elastic sway frames are examined

Various approximate methods of second-order analysis for sway frames are re-

viewed and the conditions limiting the use of these procedures are stated. A

rational method for combining the nonsway and sway moments is develop.ed

;(\) %racucal n;thc;‘l th m;:h.llcim§J the effects of sway deflections due to gravity.
ad moments and out-of-plumb construction i i

e eed p ction in the approximate second-order

INTRODUCTION

_In the analysis and design of multistory structures the “geometric non-
linearities” caused by the influence of displacements on the equilibrium
of the structure must be considered. The modification of first-order anal-
yses to include this geometric nonlinearity is the primary objective of
this paper and a companion paper (8). According to the principle of su-
perposition, a frame can be analyzed separately as a nonsway frame and
a sway frame with the final force resultants obtained by superposition
provided that the axial forces in the members of both frames are equai
to those of the original frame under the actual state of loading. A non-
sway frame, which is completely braced against sidesway at floor levels
and sup]ected to gravity load moments, was included in an earlier study
(8). This paper deals with the sway frame subjected to lateral loads and
axial forces in the columns.

’T:h‘is paper consists of four parts. First the effects of geometric nonlin-
earities are studied. Second, a number of approximate methods of sec-
ond-order elastic analysis are examined. Next a method of combining
the nonsway and sway moments is developed, and finally, procedures

for considering sway deflections due to gravity load moments and out-
of-plumb construction are presented,

GeoMETRIC EFFECTS

Fig. 1{a) shows a column which can be any column in a sway frame
subjected to forces at the ends. A straight line joining the ends of the
column forms an angle of 4/L with respect to the vertical. The axial load
N may be replaced by inclined and horizontal components as shown in
Fig. 1(b). The first of these acts parallel to the line joining the ends of
the column and, assuming small deformations, is equal to N. The hor-
izontal component is equal to Na/L. Consequently, the total shear acting
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FIG. 1.—Geometric Effects Due to Axial Loads

at the end of the column is the sum of the original end shear V resisting
the external lateral loads, and the N-a shears (Na/L) resulting from the
moments induced by N acting through the deflection a.

Accordingly, the geometric effects due to the axial load can be decom-
posed into two types as shown in Fig. 1(c). First are effects due to the
N-z shear which are termed the “N-a effects” (also called PA effects).
The N-2 shear produces an overturning moment which in turn tends to
increase the lateral displacement and the overturning moment. The sec-
ond type of geometric effect occurs due to secondary moments produced
by N times the displacements from the chord line of the column. These
will be termed the ““C and § effects” because the axial load acting in this
way changes the values of the stability functions C and § in the slope-
deflection equation

EI a
M'z:_f C62+591——L(C+5) ................................ (1)

in which M and 6 = the end moment and rotation of a given column,
respectively. Subscripts 1 and 2 refer to the ends of the column. The C
and § terms in Eq. 1 take into account the additional bending moments
contributed by the axial load acting on the column. If this effect is ne-
glected, as in a first-order analysis, C and S are taken as 4 and 2, re-
spectively. The C and S effects in a nonsway frame have been discussed
in a companion paper (8). The N-a effects take into account the addi-
tional moments at the ends of the column contributed by the vertical
axial load. In a first-order analysis, both of these effects are neglected.
An analysis including these two types of effects is considered a complete
second-order analysis. i
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An Example Frame.—The mechanics of these two types of geometric
effects can be illustrated using an elastic single-story frame subjected to
lateral and vertical loads as shown in Fig. 2(a). The vertical loads are
expressed as a function of the Euler load, N, = 7°EI/L% The column
adal load is assumed equal to the vertical load above it, the beam is
rigid, and EI is constant for all the columns. In the absence of vertical
loads a lateral load H = 4V, produces a shear of V; in each of the col-
umns, and the frame undergoes a lateral deflection 4, as shown in Fig.
2(b}. The end moment M, is equal in all the columns,

To study the N1 effects only, the C and S will be taken equal to 4 and
2, respectively. The vertical loads are replaced by a horizontal force equal
to the sum of N-2 shears from all the columns as shown in Fig. 2(c).
With this additional force, the sway of the frame is increased to 4 = fsau .
Since the lateral stiffness of each column remains unaffected, the shear
resisting the total horizontal forces in each column becomes f,V,, and
the end moment in each column is also equal to f,M,. The shear re-
sisting the lateral load H in each column, as presented in Fig. 2(b), can
be obtained by subtracting the N-z shear for a particular column from
the total shear f,V;. As the N-a shear is different for each column, the
lateral load shears have been redistributed compared to the first-order
shears in Fig. 2(b). Thus, the capacity of a column to resist the lateral
load diminishes as the axial load is increased.

When the C and S effects are also included in the analysis {i.e., a com-
plete second-order analysis) the sway of the frame is increased further
to @ = f,ap because the lateral stiffness of those columns subjected to
adal loads are reduced to the values shown in Fig. 2(d). Note that the
reduced lateral stiffness shown in the figure corresponds to the total
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FiG. 2.—Single-Story Frame with Rigld Beams
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shears including the Nz shears. The values would be different if only
the lateral load shears are considered. This will be discussed later.

The reduction in column stiffness increases with higher axial loads.
Since the total horizontal forces are resisted by the columns in propor-
tion to their relative lateral stiffnesses, the total shear in each column
becomes different. The shear in the column without any axial load is
equal to £,V,, whereas the total shear in each of the axially loaded col-
umns is less than f,V, . The most highly loaded column resists the least
amount of shear. Similarly, the end moment is equal to f,M, for the
column not axially loaded, and smaller for the others. The moment dia-
grams for the axially loaded columns are nonlinear due to the C and 5
effects, compared to the linear moment distribution which results if only
the N-a effects are considered (Fig. 2(c)). In the most highly loaded col-
umn, the maximum moment occurs away from the end.

The lateral load shear in each column is also presented in Fig. 2(d).
Because the reduced stiffnesses of the axally loaded columns reduce
their ability to resist the lateral loads, more lateral load shear is added
to the less heavily loaded columns. For the column with a vertical load
of N,, the column does not offer any resistance to the lateral load, be-
cause N, is equal to the free-to-sway critical load of that column. For the
column with a vertical load greater than N,, the lateral load shear has
reversed direction, indicating that a negative shear is required to brace
it from failing laterally.

To summarize, the N-a {PA) effects cause an increase in the lateral
deflections and overturning moments in a structure, while the C and &
effects reduce the lateral stiffness of a structure and cause a redistribu-
tion of internal end moments and total lateral load.

APPROXIMATE SECOND-ORDER ANALYSIS OF Sway FRAMES

Iterative Method.—A number of authors (11,19,20) have described an
iterative calculation of the N-z (P4) effects in which the lateral deflec-
tions caused by the Nay/L shears (a, = first order deflections) give rise
to a new set of Na/L shears which in turn give rise to a new set of
deflections. After several iterations a good estimate of the N-a effects is
obtained. This procedure assumes that C and S effects are negligible and
hence corresponds to the case illustrated in Fig. 2(c).

Modified Iterative Method.—Based on the assumption that the de-
flected shape produced by lateral and vertical loads is equal to that pro-
duced by lateral loads plus sway forces applied at the floor levels, a
“modified iterative method” can be derived using the principle of min-
imum potential energy. In this method, a sway frame is analyzed ac-
cording to the first-order theory for lateral loads plus sway forces H,
given by

2 B Y (2)

in which V, = (2 ﬂr) TR U 3

the subscript i refers to floor level at which H; acts and the story below
this floor, where V; acts. The summation sign Z in Eq. 3 denotes sum-

2531



mation for all columns and inclined bracing elements in a given story.
The term v is the ratio of the downward displacement of the top of the
bent column (Fig. 3(b)) to that of a straight column (Fig. 3(z)) and is
defined in Fig. 3. This factor accounts for the effects of bending between
ihe ends of the column and is referred to as the “flexibility factor.” The
evaluation of this factor will be discussed later. The term N denotes the
axial compressive force in a column in a given story when the frame is
subjected to the original state of loading (i.e. both gravity and lateral
loads), and L is the corresponding column height. In the case of a pin-
ended inclined bracing member N = the vertical force component of
the axial force in the member (positive for compression), L = the vertical
projection of the member length, and v = 1.0. The term a is the hori-
zontal deflection of the top of a given story relative to its bottom. The
analysis is iterative as the deflection a is the result of the analysis.

The axial load N in Eq. 3 can be assumed equal to its first-order value
to simplify the calculation. This will not introduce any significant errors
since the summation sign offsets the errors introduced by this assump-
tion unless L varies widely from column to column. It should be noted
that the term L in Eq. 3 is placed within the summation operator, and
therefore the equation can be applied to the case of unequal column
heights in the bottom story. For the other stories, L is the same as the
story height.

The flexibility factor v for a given column can be determined by
4(G1 = Ga) + (G, + 3)(G, + 3)}
(G +20G +2) - 1]

(29,

e (5)
El
(=3
B/ beam

The sign I denotes summation for columns or beams rigidly connected
to one end of a given column, and similarly for G, at the other end. The
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FIG. 3.—Vertical Displacement of Column Distortion
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lower limit of y given by Eq. 4 is 1.0 when G, = G, = = (hinged at both
ends). The upper limit is 1.22 when G, = G, = 0 (rigid beams at both
ends) or G; = @ and G; = 0.

Eq. 4 is derived on the basis of three major assumptions (7). First, a
first-order deflected shape is assumed for the column. Second, the ro-
tational stiffness of the beams is equal to 6El/Ly . Third, the column
end moments at the joints are distributed between the column above
and the column below in the ratio of the EI/L values of the two columns.
Similar relationships for the flexibility factor vy have been developed by
a number of investigators (5,9,15,16,18).

The first assumption is compatible with the basic assumption in the
modified iterative method that the deflected shape of a sway frame un-
der vertical and lateral loads can be represented by the deflected shape
produced by horizontal loads only. The second assumption is reasonable
for beams with both ends rigidly connected to columns which undergo
similar deformations. In the case that the far end of a beam rigidly con-
nected to the column under consideration is hinged or fixed, the beam
length should be multiplied by 2 or 1.5, respectively, when calculating
the corresponding value of G.

The third assumption is reasonable for frames with stiff beams where
the relative story deflections are roughly the same in the upper and lower
stories such as, for example, a multistory frame with stiff beams where
the lateral stiffness and loading of a given story do not differ signifi-
cantly from the story above or below. In other words, this assumption
is most valid for the value of the flexibility factor close to the upper limit.
For a frame with flexible beams, this assumption becomes less accurate,
but its effect is proportionally smaller because the values of the flexibility
factor become smaller. The offsetting effect is best reflected by the ex-
treme case of a shear wall. For a shear wall this assumption breaks down,
but for G approaching zero Eq. 4 gives v = 1.0. This is a reasonable
answer since a shear wall within a story deflects in a very similar manner
to a rigid column (Fig. 3). Therefore, this assumption leads to reasonable
values of v although it may not represent the actual behavior in the case
of flexible beams.

As is apparent from Eq. 3, the flexibility factor needs to be evaluated
for each column. In recognition of the small range of the values of the
flexibility factor (from 1.0 to 1.22), it may be preferable to use a single
value of y for the entire story of frame, when a precise calculation is
deemed unnecessary. Table 1 shows the range of the values of the flex-
ibility factor corresponding to given values of G;, the smailer value of
G for a column. The range of G, and G, from 0.1 to 10 used in the table
includes most practical cases. An average flexibility factor ¥ which tends
to be on the conservative side is suggested for a given range of the val-
ues of G,. Since G, will rarely be less than 0.1 in practical frames, a
conservative value of § = 1.15 can be used for any frame and the cal-
culation will be simplified. Stevens (18) proposed the use of ¥ = 10/9 =
1.11.

The modified iterative method differs from the conventional iterative
analysis discussed earlier (6,19,20) by introducing the flexibility factor v
into the expression for the N-a shears (Eq. 3). This was first suggested
by Resenblueth (15) and later by Rubin (16).
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TABLE 1.—Suggested Values for the Average Flexlbility Factor

G, Stiff restraints 0.1-0.4 0.4-1.0 Flexible restraints 1.0-10
(1) (2) {3) (4}

b 1.08-1.18 1.05-1.12 1.0-1.07

¥ 1.15 1.1¢ 1.05

Note: G, is the smaller value of G for a given column.

The physical significance of the flexibility factor can be explained by
recalling the discussion of the C and § effects. (Note that vy=10uC
and $ effects were neglected.) As stated previously, inclusion of the C
and 5 effects produce two consequences: (1) Further increasing the lat-
eral deflections; and (2) redistributing the total shears or the story mo-
ments. The former is artificially looked after by the introduction of the
flexibility factor. The latter, however, is not directly taken into account
and is a source of possible errors in the moments. This, however, can
1bc?. gecé‘;i)ﬁed by using the moment-correction factors developed by Helles-
an .

Based on the assumption that the lateral deflections and second order
end moments M, and M, are accurately determined in the analysis, the

gmx:'smum moment, M., , along the length of a column is given by
q. 6.

L (6)

in which 8,, = the moment magnifier for a restrained nonsway column
epd moments M,; and M. from the modified iterative analysis. For
simplicity, the approximate formula for §,, suggested in the companion
Paper (8) is used here. The column end moments, which are also needed
to determine the moments required in the attached beams, can be con-
servatively assumed equal to M ,,; and M, (6).

Modified Negative Brace Method.—This method gives essentially the
same results as the modified iterative method but allows a direct cal-
culation without iteration, A fictitious pin-ended diagonal bracing mem-

ber with a negative value of AE given by Eq. 7 is inserted in every story
of the structure.

(E 15) L,
AE= "
po TP 7

in which L, = the length of the negative brace and « = its angle of
inclination. The structure, including the negative braces, is then ana-
lyzed for the lateral loads acting alone (i.e., a first-order analysis). The
FollémnG end moments obtained from this analysis are equivalent to M,
in Eq. 6.

The concept of negative braces originated with Nixon et al. (12) who
derived an expression similar to Eq. 7 without considering the flexibility
factor. A compiete derivation of this method is given by Lai (7). ’
) Story Ma_gnifier Method.—In this method the modified iterative method
is further simplified by making the additional assumption that each story
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can behave independently of other stories. As a result, any story in a
frame subjected to lateral loads plus sway forces can be treated like a
single-story frame subjected to lateral load shears, ZV, plus the modified
N-a shears, (2 yN/L)a. of that story. Because the deflection of a single-
story sway frame under horizontal forces only is directly proportional
to the applied horizontal force, the following relation is obtained:

TV + (Eﬂ)a
. L
a—;=—-—i-1—/—— ........................................... t:)]

in which a4 = the first-order deflection of the story. After rearranging
the terms, the deflection magnifier f, defined as a/z, is equal to

pAY

in which Z denotes the summation for all columns and inclined braces
(if any) in a given story. Because the moments in a single story frame
subjected to horizontal forces are directly proportional to the deflection,
the column end moments are equal to f,Mg which is equivalent to M,
in Eq. 6. The term My, is the first-order end moment in a given column
in a sway frame. Expressions similar to Eq. 9 have been developed by
many investigators (2,5,9,11,13,15,18).

The simplifying assumption of the behavior of a story being indepen-
dent of other stories is reasonable for a frame with stiff beams. Based
on extensive evaluation of this method (7), this assumption was shown
to be valid subject to two specific conditions. First, the maximum value
of f, in the structure is less than about 1.5. Second, an inflection point
should occur at or between the ends of each column in every story of
the structure when it is subjected to lateral loads.

Frame Magnifier Method.—This method is also a simplification of the
modified iterative method. Here the additional assumption is made that
the deflection ratio a/a, is equal for all the stories of the frame subjected
to lateral loads H plus sway forces. In other words, the total lateral de-
flections of the frame are those produced by the lateral loads f;H, where
fi = a/a, . As aresult, the energy stored in the structure due to the lateral
loads plus the sway forces is identical with the energy resulting from
the lateral loads f,H. Based on this, the deflection magnifier {; becomes
equal to

f= L (10)

SOk

i=1

]. - n
2 (ZV)iaq
i=1

2535



n which i = the story level; and n = the number of stories in the struc-
ture. Since all the deflections are increased by the same ratio, the column
end moments are equal to f, Mg, which is equivalent to M ,,.’ in Eq. 6
The critical [oad factor implied by Eq. 10 (i.e., when f, = «) is similar
to the one given by Stevens (18) although derived in a different manner.
The simplifying assumption of equal a/a, in all the stories was found
{7) to be valid provided the structure includes a distinct shear wall ex-
ter:dmg“fr_orr} the base to the top of the structure and fs is less than about
li A “distinct shear wall” is defined here as a stiff vertical element
ﬁvyr sicz has ltesds than two points of contraflexure. This assumption was
st . :vgegIS; :d. by Perrez-V. (14) but the limitation of the method was
Effective Length Method.—This method can also be consi
the:‘r simplification of the modified iterative method, bL?tn ?tlc}g: il?eh:é-
striction that the frame to be considered cannot include any distinct brac-
ing _e-lemenFs such as shear walls or inclined bracing members. Two
:;lfdlt{onal s1mphfymg assumptions are required in the calculation of the
e ectllve- lengths as implemented in the ACI Code (1). First, the rota-
ﬂom_a stlffr.less of the beams is equal to 6E],/L, corresponding to in-
ection points at mid-span of the beams. Second, the column end mo-
ments at the joints are distributed between the column above and the
column belovy in the ratio of the EI/L values of the two columns These
two assumptions permit a story to be isolated from the frame with the
columq end rotational restraints expressed as a function of G, and G
F?;. an isolated single-story frame, the modified iterative method is SiI:tL
gned.to Eq. 9. Based on Eq. 9 and the idealized end restraints, the
eflection magnifier f, can be expressed as ’

in which Ny is the free-to-sway critical load of a column. The free-to-
sway effective length factor, which is a function of G, and G, only, is
available from an effective length factor alinement chart or other stan-
dard method. The sign X denotes summation for all columns in a given
story. The above equation was given by Hellesland (5). For a story with
Egggl co[utr}::m heights, the terms L in Eq. 11 cancel out, and the equation
mes the same as given in i i

ot foe i &amg;& the American Concrete Institute (ACI)
_ The assumption of mid-span inflection points is reasonable for beams
rigidly connected to columns. In fact, the summation of N s for all col-
Umns 1n a story offsets some of the error resulting from the inflection
S%mts nfc;t occurring exactly in mid-span of the beams. If the far end of
o e;m amed into the column under consideration is hinged or fixed,

¢ beam length should be multiplied by 2 or 1.5, respectively when

calcuiating the corres i L
ponding value of G, in order to obtain the co
value of k; from the alinement chart. et
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The second assumption, which permits a story to be separated from
the frame, is reasonable for a regular multistory frame with stiff beams
and regular loading as discussed earlier. The conditions suggested for
the story magnifier are also suggested here to limit the application of
the effective length method. That is, an inflection point should occur at
or between the ends of each column in every story of the structure when
subjected to lateral loads, and f; should be less than about 1.5. Subject
to these conditions, the effective length method was found (7) to give
quite accurate results except at discontinuities such as stories where the
column stiffness changes abruptly. Because of its inability to adequately
account for discontinuities, the effective length method was generally
less accurate than the story magnifier method.

Accuracy of Approximate Second-Order Analyses.—In Ref. 7 the ap-
proximate analyses are compared to “exact’”” second-order, elastic slope
deflection analyses of a series of short and tall frames. Three of these
are summarized in Fig. 4 to Fig. 6. In each case the building studied is
a 24-story frame with a single concentrated lateral load applied at the
top and concentrated vertical loads applied at each joint in the frame
and at the top of the wall in the third frame. The stepped lines in each
figure give the ratio M /My, from the exact analysis. For the frame with
the wall this is given as the deflection magnifier 2/a, . In all calculations
y was taken as 1.05 except in the bottom story where 1.20 was used due
to the fixed base.

Fig. 4 shows a frame with constant beam stiffness and column stiff-
nesses varying in 3 steps from 1.04 times the beam stiffness at the top
to 3.7 times at the bottom. The magnifiers computed by the story mag-
nifier method give excellent agreement. The ACI procedure is also ex-
cellent except at changes in column stiffness. The frame magnifier method
gives a single value which approaches the average magnifier.

Fig. 5 shows a frame with very stiff columns in the lower stories (18.8
times beam stiffness). The first order bending moment diagram for this
building shows single curvature bending in the columns in the bottom
4 stories. The story magnifier method shows the correct trend while the
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Once nonsway and sway moments have been co i
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difficulty arises from the fact that the column end moments in the n(.!m-
sway frame are not known (8). Presently, there are three basic ap-
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Steel Construction (AISC) Specification (16). The maximum moment
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Mo, In a column of an unbraced frame is given by

Meowx = o (Moms + Mgh ovveeenniiinninnnns S 12)

in which Mg, = the first-order end-moment of the column from the
nonsway analysis; and M, = the first-order end moment from the sway
analysis. The summation of the two end moments is performed at each
end of the column and the numerically larger sum, denoted by the sub-
script 2, is used. This, obviously, is not a rational approach because the
sway magnifier f; is only applicable for My, .

The second approach (3,4) is to combine directly the nonsway maxi-
mum moment, M ..o, and the sway maximum moment, M, ..., of a
given column:

Mauax = Mo + Momax oo oee e et oo (13)

This is a conservative approach since the summation of the two maxi-
mum values must be greater than or equal to the actual maximum mo-
ment. [t may be overconservative when the two maximum moments oc-
cur in different sections and the two values are comparable in magnitude.

The third approach {6,11) is based on the assumption that the C and
5 effects can be neglected. As a result of this assumption, the nonsway
end moments are equal to the first-order values. Therefore, the end-
moments of the nonsway and sway frame can be superimposed at each
end of the column. Once this is done, the maximum moment in the
column with the known end-moments can be determined as in a pin-
ended column (11).

According to the principle of superposition in which load effects are
superimposed at the same section, the third approach is more rational
than the second one. Nevertheless, the second approach can take into
account the C and § effects, which the third approach cannot. The method
to be proposed is similar to the third approach in that moments are
summed at the two ends of the columns, thus satisfying the principle
of superposition. However, an attempt will be made to include the C
and S effects.

A method of combining the nonsway and sway moments is developed
schematically in Fig. 7. A frame subjected to external moments, lateral
loads and column axial forces is shown in its equilibrium position in Fig.
7(a). In Fig. 7(b) the same frame, subjected to external moments only,
is braced against sway with lateral deformations, 4, equal to those in the
original state of loading (Fig. 7(a)). This frame can be decomposed into
a nonsway frame subjected to external moments and a laterally de-
formed nonswayv frame with forced deformations a, as shown in Fig.
7(c). Therefore, it can be seen that the column end moment, M, , in the
frame in Fig. 7(b) is equal to the sum of My, and M. The term M, is
the column end moment in the laterally deformed nonsway frame or the
result obtained from the modified iterative analysis or the modified neg-
ative brace analysis. In the story magnifier method or other simplified
methods, the general term M, will be replaced by f,M,, which corre-
sponds to the definition of the moments from the modified iterative
method or negative brace method. When the frame in Fig. 7(b) is sub-
jected to the column axial forces (Fig. 7(d)), the resuiting load effects are
identical with those in the original state of loading. Therefore, it can be

2539



IIG- 1.—Sche"|aﬂc Deve|0pillelll O| “le Flo Osed App’oacll |OI Olllblllill “'e

seen that the moment at the end of the column is
Mt = MOns + Mm

and the maximum moment al th
be given by ong the length of the column, M

Mua = 8 (Mows + fiMogy oo (14)

ln_whlgh Bns = the moment magnifier for the restrained nonsway column
with given first-order end moments. The approximate formula for 3
suggested in the companion paper (8) is used here with the end mo.
rﬁents taken equfal tc? (M, + M) in the computation of M., . Note
that the summation is performed separately at each end of theaxcolumn
:Egs éhetnzumeéicaliz) larger value from the two ends {denoted by the
ript 2 in Eq. is multiplied by &, . i
asT]iq- 6 when I\%o,,s is equal tg zero.y - Note that £q. 14 s the same
eoretically, the approach developed above entails no as i
other than those required in the approximate methods for thS(I;1 ?rf,atl];;z
of nonsway and sway frames. In other words, if 8,, and f,M,, were exact
in the nonsway analysis and sway analysis, respectively, the value of
MBa; ﬂgw;n byDEq. 14 would also be exact.
. ections Due to Gravity Load Moments.—When the
IS prevented from swaying laterally under gravity loads, nl?;lii‘ﬁgy ffé??;i
Ere c;gveIOped in the lateral bracing elements. These holding forces can
i neclz deec;]hto the actual lateral loads when the sway frame is analyzed to
ece use ts;}ide}?way effects due to gravity loads. Generally it is suffi-
P € the holding forces from a first-order analysis of the nonsway
. thereby neglecting the C and 5 effects. This assumption is based

o i .
n the normal condition that the internal moments resulting from the

holding forces are small compared to the lateral load moments or the

max » CAI
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gravity load moments. As a result, the errors resulting from this as-
sumption are relatively insignificant in design.
Frequently, it is more convenient to perform a first-order analysis for

gravity loads without bracing the structure against sidesway. The results
of such an analysis can be used in the load superposition by following
the procedure described below. For simplicity, this procedure is derived
using a single-story frame, but it can be generalized to apply to multi-
story frames.

A single-story frame, subjected to gravity loads only, displaces a dis-
tance a,, , the first-order displacement due to gravity load moments, M,
and M,;. It is then braced against further sway while the column axial
forces are applied, as shown in Fig. 8(a). The first-order moments in the
resulting nonsway frame are those obtained from a first-order gravity
load analysis of the frame without bracing the structure against sway.
This frame can be decomposed into the two frames shown in Figs. 8(b)
and 8(c). The frame in Fig. 8(b) is a nonsway frame, subjected to the
external moments and column axial forces, with a zero displacement at
the joint. The holding force in this frame is denoted by V,. The frame
in Fig. 8(c) is a nonsway frame, subjected to column axial forces, with
an imposed displacement of 4, at the joint. The holding force is denoted
by V. In this way, the holding force V, in the original frame (Fig. 8(a))
is equal to

A O O (15)

For the frame shown in Fig. 8(c), the column axial forces are assumed
to be replaced by a horizontal load equal to (ZyN/L} aq, (Fig. 8(d)) where
T denotes summation for all columns in the story. This can be derived
based on the same assumption and method as in the modified iterative
method except that ““a” is replaced by “a,, . Consequently, the holding
force V (Fig. 8(c)) is assumed equal to

] N
V= Vi - (2 ’T) B0g ot e (16)

st order Gssiscament due
2oy ons moments

N
ATAL TN ST
ow Tt Vet BT

]

FiG. 8.—Holding Shears In a Nonsway Frame with imposed Displacements
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m which Vi, = the first-order value of V, (Fig. 8(b)). Substituting Eq. 16
into Eq. 15 and making the assumption that V, = V,, as discussed ear-
lier, V, is equal to

YN
V,= (2 T) g v (17)

which is the horizontal force that should be added to the actual lateral
loads in the sway analysis. To apply Eq. 17 to a multistory frame, the
holding force V, for each story represents a holding shear for that story
which is added to the lateral load shear in the sway analysis. In other
words, the total lateral load at a given floor level is equal to the actual
load plus the algebraic sum of the holding shears V, (Eq. 17) from the
story ab_ove and below the floor in the manner implied by Eq. 2. Thus,
this is similar to the calculation of the sway force in the modified iter-
ative method.

In the modified iterative method, the holding shears can be included
more conveniently by writing the modified N-a shear =V, (Eq. 3) as

] N
SV, = (2 YT)(a F B0g) e (18)

P e

in which term “a” still represents the final value of the second-order
deflection of the structure due to lateral loads.

In the story magnifier method, the procedure can be simplified. For
a single-story frame subjected to the lateral load shear plus the modified
N-a shear as assumed in the story magnifier method, the deflection is
directly proportional to the horizontal load applied at the joint. Noting
this condition, the following relation, based on Eq. 9, can be derived:

a 2o
— = fut - D= ..
= fat (= ) PSR EEL LR LRI ITTPPRPRRERRPREP RPN (19)

where the sway magnifier for lateral load effects is

ZVy

The terms a,, and ZV represent the first-order story displacement and
the total story shear, respectively, produced by the actual lateral loads
H qnly. Similarly, the value of f,M,, in the analysis for the sway frame
subjected to lateral loads and holding forces can be assumed equal to

fsMOs = {fsh‘ + (sz - 1) ﬂ:l MOH’ ................................ (21)

AoH

ir}l1 which MOH'= the column end moment from a first-order analysis of
the frame subjected to the actual lateral loads H only. Eq. 21 is also ap-

plicable for the effective length method t th i
Faven by B o1 g except that f; is taken equal to
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Out-of-Plumbs.—In real structures, the centroid of the top of a col-
umn often is not directly over the centroid at the other end due to con-
struction errors. In other words, columns are frequently “out of plumb.”
As a result, the gravity loads acting through the initially inclined col-
umns generate additional forces within the structures. For design pur-
poses, all columns in the same story are generally assumed to lean in
the same direction with the same amount of out-of-plumb (10). Based
on this assumption, the inclusion of the effect of out-of-plumbs in the
second-order analysis is derived below.

Assume that fictiious external moments acting at the joints of a stru-
cure can produce the prescribed initial out-of-plumbs. It is understood
that the first-order moments caused by these fictitious external moments
do not exist, and therefore only those caused by the column axial forces
acting through the out-of-plumbs are considered. The methodology fol-
lows that for the gravity load deflections. In Fig. 8, the term g is re-
placed by a4, which denotes the initial out-of-plumb for any story. Con-
sequently, the holding shear, which should be added to the lateral load
shear in the sway analysis of an initially undeformed structure, is equal
to (2 yN/L) a,, for a story. Note that the real first-order moments in the
nonsway frame (Fig. 8(a)) with the lateral displacement equal to a,, are
equal to zero, The additional moments caused by the column axial forces
in the nonsway frame are assumed negligible.

Thus, the out-of-plumbs are included in the analysis in the same way
as the gravity load deflections and the term 4, in the preceding section
can be replaced by (4, + ag,) in the sway analysis.

SUMMARY

The geometric effects in a sway frame have been separated into two
types: the “N-a effects” and the “C and S effects.” A single-story frame
was used to illustrate these two types of effects.

Various approximate methods of second-order analysis for sway frames
have been reviewed and the assumptions in each discussed. The con-
ditions limiting the use of these procedures are stated.

A rational method for combining the nonsway and sway moments is
proposed. The proposed method entails no assumptions other than those
required in the approximate methods for the second-order analysis of
nonsway and sway frames. A practical method of including the effects
of sway deflections due to gravity load moments and out-of-plumb col-
umns in the approximate second-order analysis is presented.

ACKNOWLEDGMENTS

This study was financed by a grant from the National Research Coun-
cil of Canada. The authors wish to thank Dr. J. Hellesland for his input
during the formative stages of the research.

ApPENDIX |.—REFERENCES

1. “Building Code Requirements for Reinforced Concrete (ACI-318-77),” Amer-
ican Concrete Institute, Detroit, Mich., 1977,

2543



10.
11.
12,
13.

14.

15.
16.

17.

18.
19.
20.

- Fey, T., “Approximate Second-Order Analysis of Reinforced Concrete Frames,”

Bauingenieur, Berlin, Germany, June, 1966.

. Ford, I. S., Chang, D. C., and Breen, J. E., “Design Indications from Tests

of Unbraced Multipanel Concrete Frames,” Concrete International—Design
and Construction, Vol. 3, No. 3, Mar., 1981,

- Gouwen, A. ]., “‘Discussion of ‘Column Design by P-Delta Method,” Wood,

B. R., et al.,” Proceedings, ASCE, Vol. 102, No. ST10, Oct., 1975.

. Hellesland, }., “Approximate Second-Order Analysis of Unbraced Frames,”

Internal Report, Dr. Ing. Aas-Jakobsen, A/S, Oslo, Norway, 1976.

- Iffland, J. S. B., “Design for Stability in High-Rise Buildings,” Proceedings,

International Conference on Planning and Design of Tall Buildings, Vol. II,
Lehigh Univ., Bethlehem, Pa., 1972.

. Lai, S.-M. A., “Geometric Non-Linearity in Multistory Frames,” Ph.D. The-

sis, Department of Civil Engineering, University of Alberta, Edmonton, Can-
ada, 1981.

. Lai, §.-M., A,, MacGregor, ]. G., and Hellesland, J., “Geometric Non-Line-

arities in Non-Sway Frames," Journal of Structural Engineering, ASCE, Val. 12,
No. ST12, Dec., 1983.

- LeMessurier, W. ]., A Practical Method of Second-Order Analysis, Part 2—

Rigid Frames,” AISC Engineering Journal, Vol. 14, No. 2, Second Quarter,
1977.

MacGregor, ]. G., “Qut-of-Plumb Columns in Concrete Structures,” Concrete
Intemational—Design and Construction, Vol. 1, No. 6, June, 1979.
MacGregor, J. G., and Hage, S. E., “Stability Analysis and Design of Con-
crete Frames,” Proceedings, ASCE, Vei. 103, No. ST10, Oct., 1977.

Nixon, D., Beaulieu, D., and Adams, P. F_, "Simplified Second-Order Frame
Analysis,” Canadiar Journal of Civil Engineering, Vol. 2, No. 4, Dec., 1975.
Parme, A. L., ""Capacity of Restrained Eccentrically Loaded Long Columns,”
Symposium on Reinforced Concrete Columns, Publication 5P-13, American
Concrete Institute, Detroit, Mich., 1966.

Perez-V,, F. |., “Stability Problems of Tall Buildings,”” Proceedings, Annual
Conference on Reinforced Concrete Design, Institute of Cement Producers
of Columbia, Bogota, 1977.

Rosenblueth, E., ““Slenderness Effects in Buildings,” Proceedings, ASCE, Vol.
91, No. 5T1, Feb., 1965.

Rubin, H., “The Q-A Procedure for Simplified Computation of Sway Frames
According to the Second-Order Plastic Design Theory,” Der Bauingenieur, Vol.
48, (In German), 1973,

“Specifications for the Design, Fabrication and Erection of Structural Steel
for Buildings,” American Institute of Steel Construction, New York, N.Y.,
1978,

Stevens, L. K., “Elastic Stability of Practical Muitistory Frames,” Proceedings,
Institution of Civil Engineers, Vol. 36, London, England, 1967.

Wood, B. R, Beaulieu, D., and Adams, P. F., “Column Design by P-Delta
Method,” Proceedings, ASCE, Vol. 102, No. ST2, Feb., 1976.

Wood, B. R, Beauliew, D., and Adams, P. F., “Further Aspects of Design
by P-Delta Method,” Proceedings, ASCE, Vol. 102, No. ST3, Mar., 1976.

APPENDIX |.—NOTATION

The following symbols are used in this paper:

A
q

C
EI
El,
fi

area;

lateral deflection of the top of a column relative to the bottom;
stability function in the slope-deflection equation (Eq. 1)
flexural stiffness of a column;

flexural stiffness of a beam;

sway deflection magnifier defined by a/a,;
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G = relative stiffness parameter given by Eq. 5;
H = horizontal load;
L = column height;
Ly = beam length;
M = end moment of a column; o _
M, = end moment of a column obtained from the modified iterative
analysis;
N = axial compression in a column; ]
Ni = free-to-sway critical load of an elastic column;
n = total number of stories in a frame; .
§ = stability function in the slope-deflection equation (Eq. 1);
V = end shear in a column due to lateral loads;
V, = sum of modified N-¢ shears in a story (Eq. 3);
a = angle of inclination of brace; o
8., = moment magnifier for a restrained nonsway column with given
first-order end moments;
v = flexibility factor;
¥ = average flexibility factor; and
§ = end rotation of a column.
Subscripts
0 = first-order effects (implying N = 0);
1,2 indicate ends of a column;
g = effects due to gravity load moments;
H = effects due to horizontal loads;
i = story or floor level;
ns = nonsway column; and
§ = sway column.

Shears, V, moments, M, and displacements, a, without subscripts refer
to the final second-order values. The subscript 0" as in Vy, or a, refers
to the first-order value. The subscript “2” as in M; refers to the larger
end moment in a column.
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