ACI STRUCTURAL JOURNAL

Title no. 94-S72

TECHNICAL PAPER

ACI Shear and Torsion Provisions for Prestressed Hollow

Girders

by Thomas T. C. Hsu

New torsion design provisions have been proposed for the 1995 ACI Build-
ing Code. As compared to the 1989 provisions, these generalized 1995 pro-
visions have three advantages: First, they are applicable to closed cross
sections of arbitrary shapes. Second, they are applicable to prestressed
concrete. Third, they are considerably simplified by deleting the “torsional
concrete contribution” and its interaction with shear. These new provisions
are suitable for application to concrete guideways and bridges, because
these large structures are always prestressed and are often chosen to have
hollow box sections of various shapes. This paper discusses the back-
ground of the new code provisions, suggests modifications to code formu-
las, and illustrates the application of the code provisions to prestressed
hollow girders by way of a guideway example.
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INTRODUCTION
New design provisions for torsion have been proposed for

the 1995 ACI Building Code. These provisions are the prod-
uct of more than three decades of research in torsion. This re-
search includes the establishment of the equilibrium truss
model (Nielsen, 1967; Lampert and Thurlimann, 1968; Elf-
gren, 1972; CEB-FIP, 1978; Thurlimann, 1979), the com-
pression field theory (Collins, 1973; Collins and Mitchell,
1980), and the softened truss model. (Hsu and Mo, 1985a,
1985b, 1985c; Hsu, 1988).

The equilibrium truss model provides a complete set of
equilibrium equations, thus furnishing torsion design with a
clear concept. The compression field theory, which consid-
ers also Mohr compatibility condition, allows the torque-
twist relationship to be predicted. The softened truss model
takes into account the softened biaxial constitutive laws in
addition to equilibrium and compatibility. As a result, it clar-
ifies the stress and strain conditions in the shear flow zone.
This understanding of the shear flow zone (Hsu, 1990, 1993)

allows us to define the thickness of the shear flow zone and -

the lever arm area.

Because of the rationality of these theories, the 1995 tor-
sion provisions are considerably more generalized as com-
pared to the 1989 version (ACI-318, 1989). They are now
applicable to closed cross sections of arbitrary shapes and to
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prestressed concrete. The new torsion design process is also
considerably simplified by deleting the “torsional concrete
contribution” and its interaction with shear (MacGregor and
Ghoneim, 1995).

RESEARCH SIGNIFICANCE
This paper provides background information for the shear
and torsion provisions in the 1995 ACI Code. This informa-
tion is presented in a systematic and logical manner. The pre-
sentation starts out with the derivation of basic equilibrium

‘equations, from which the design equations are developed.

The design procedures are clearly summarized in a flow
chart, and are illustrated by a guideway design example.
Concrete guideways and bridges are usually made of large
prestressed hollow girders. Such structures can now be de-
signed by the new ACI shear and torsion provisions. Special
problems pertaining to hollow box girders are discussed.
Three code provisions, which are at present applicable only
to solid sections, are generalized to include hollow sections.

BASIC EQUILIBRIUM EQUATIONS

Equilibrium in Element Shear
A membrane element subjected to a shear flow g is shown
in Fig. 1 (a). The element has a thickness of # and a square

. shape with a unit length in both directions. The longitudinal

bars are arranged in the Zdirection (horizontal axis) with a
uniform spacing of sx The transverse bars are arranged in the
t-direction (vertical axis) with a uniform spacing of s. After
cracking, the concrete is separated by diagonal cracks into a
series of concrete struts as shown in Fig. 1(b). The cracks are
oriented at an angle 0 with respect to the £axis. The diagonal
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concrete struts, the longitudinal bars, and the transverse bars
form a truss which is capable of resisting the shear flow g.

Equilibrium in the longitudinal direction is shown by the
force triangle on the left face of the shear element, Fig. 1(b).
The shear flow ¢ pointing upward is resisted jointly by a lon-
gitudinal steel force n, and a diagonal concrete force,
(04h)cos0. The steel force n,is defined as the longitudinal
steel force per unit length, Af/ss where A,is the cross sec-
tional area of one longitudinal bar and fl is the stress in the
longitudinal bars. The concrete force, (G 44)cos6, represents
the diagonal concrete stress, G, acting on a thickness of &
and a width of cos. The cos@ relationship is shown by the
geometry in Fig. 1(a). From this force triangle the shear flow
g can be related to the longitudinal steel force nl by the ge?
ometry: :

q =n, tan® )

Similarly, equilibrium in the transverse direction is shown
by the force triangle on the top face of the shear element, Fig.
1(b). The shear flow q pointing leftward is resisted jointly by
a transverse steel force n, and a diagonal concrete force,
(04h)sin®. The steel force n, is defined as the transverse steel
_ force per unit length, Af,/s, where 4, is the cross sectional
area of one transverse bar and f,, is the stress in the transverse
bars. The concrete force, (6,;4)sin®, represents the diagonal
concrete stress, 04, acting on a thickness of 4 and a width of
sinB. The sin6 relationship is also shown by the geometry in
Fig. 1(a). From this force triangle the shear flow g can be re-
lated to the transverse steel force n, by the geometry:

q = n,cot0 2)

The shear flow g can be related to the diagonal concrete
stress 0, using either the force triangle in the longitudinal di-
rection or the force triangle in the transverse direction. From
geometry of the triangles we obtain:

q = (04h)sinBcosO 3)

Equilibrium in beam shear

A beam subjected to a concentrated load 2V at midspan is
shown in Fig. 2 (a). Since the reaction is V, the shear force is
a constant V throughout one-half of the beam, and the mo-
ment diagram is a straight line. When a beam element of
length d, is isolated and the moment on the left face is de-
fined as M, then the moment on the right face is M + Vd,,.
The shear forces on both the left and right faces are, of
course, equal to V.

A model of the isolated beam element is shown in Fig. 2
(b). The top and bottom stringers are separated from the web
element, so that the two different mechanisms operating to
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resist bending and shear can be clearly illustrated. The
stringers are resisting the bending moment and the web ele-
ment is carrying the shear force.

Assuming that the shear flow g is distributed uniformly
over the depth and along the length of the web element, then
the web element can now be treated as a large shear element

- with a depth of d,, where d,, is the vertical distance between

the two stringers. This large shear element in Fig. 2 may be
slightly different from the unit element shear in Fig. 1 in that
the longitudinal steel may not be uniformly distributed. To
take care of this non-uniform distribution of longitudinal
steel, we define N,= nd,, where N,is the total force of the
longitudinal steel over the depth d,, to resist the shear force V
= ¢4,- Multiplying Egs. (1) to (3) by the depth d,, gives the
following three equations:

V = Nl tan6 4
V = n,d, cotd (5)
V = (0,h)d,sinBcos8 ®)

Equilibrium in torsion

A hollow prismatic member of arbitrary bulky cross sec-
tion and variable thickness is subjected to torsion as shown
in Fig. 3 (a). According to St. Venant’s theory, the twisting
deformation will have two characteristics. First, the cross
sectional shape will remain unchanged after twisting; and
second, the warping deformation perpendicular to the cross
section will be identical throughout the length of the mem-
ber. Such deformations imply that the in-plane normal
stresses in the wall of the tube member should vanish. The
only stress component in the wall is the in-plane shear stress,
which forms a circulating shear flow g on the cross section.
The shear flow ¢ is the resultant of the shear stresses in the
wall thickness and is located on the dotted loop shown in Fig.
3 (a). This dotted loop is defined as the center line of shear
flow. - ’

A membrane wall element ABCD is isolated and shown in
Fig. 3 (b). It is subjected to pure shear on all four faces. Let
us denote the shear stress on face AD as T; and that on face
BC as 1,. Thé thicknesses at faces AD and BC are designated
hy and hy, respectively. Taking equilibrium of forces on the
element in the longitudinal 4direction we have

Since shear stresses on mutually perpendicular planes
must be equal, the shear stresses on face AB must be Ty at
point A and T, at point B. Eq. (7), therefore, means that th
on face AB must be equal at points A and B. Since we define
q = Th as the shear flow, g must be equal at points A and B.
Notice also that the two faces AD and BC of the element can

be selected at an arbitrary distance apart without violating

the equilibrium condition in the longitudinal direction. It fol-
lows that the shear flow g must be constant throughout the
cross section.
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Fig. 3—Equilibrium in torsion
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The relationship between T and g can be derived directly
from the equilibrium of moments about the 1-axis. As shown
in Fig. 3 (a), the shear force along a length of wall element
dt is qdt. The contribution of this element to the torsional re-
sistance is g(dt)(r), where r is the distance from the center of
twist (£axis) to the shear force gdt. Since q is a constant, in-
tegration along the whole loop of the center line of shear
flow gives the total torsional resistance:

T = q§ rdt ®) -

From Fig. 3 (a) it can be seen that rdt in the integral is
equal to twice the area of the shaded triangle formed by » and
dt. Summing these areas around the whole cross section re-
sults in:

$rdt=24, ©)

where A, is the gross area enclosed by the center line of shear
flow. This parameter A, is a measure of the lever arm of the
circulating shear flow and will be called the lever arm area.
Substituting 24, from Eq. (9) into Eq. (8) gives:

9= 55 (10)

Eq. (10) was first derived by Bredt (1896).

A shear element isolated from the wall of a tube of bulky
cross section, Fig. 3 (b), may be subjected to a warping ac-
tion in addition to the pure shear action discussed above. If
the warping action is neglected, then this shear element be-
comes identical to the shear element in Fig. 1 which is sub-
jected to pure shear only. As a result, the three equilibrium
Eqgs. (1) to (3) derived for the element shear in Fig. 1 become
valid. Substituting g from Eq. (10) into Egs. (1), (2) and (3),
we obtain the three equilibrium equations for torsion:

T = &(ZAo)tan 0 (11)
Po

T = n,(24,)cotd A(12)

T = (0,h)(2A,)sinBcosO : (13)

Notice in Eq. (11) that N,= np,,. This is because nys which
is the longitudinal force per unit length, must be multiplied
by the whole perimeter of the center-line of the shear flow p,,
to arrive at the total longitudinal force due to torsion, Ny

Comparison

Comparison of the three sets of equations for element
shear, beam shear and torsion shows that they are basically
the same. The three equations for beam shear, Egs. (4) to (6),
are simply the three equations for element shear, Egs. (1) to
(3), multiplied by a length of d,,. The three equations for tor-
sion, Eqgs. (11) to (13), are simply those for element shear,
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Egs. (1) to (3), multiplied by the area, 24,,. Hence it is only
necessary to understand the geometric and algebraic rela-
tionships of one set of three equations for element shear.

The six equations for beam shear and torsion are derived
in a consistent and logical manner. Such clarity in concept is
one of the main. advantages of the equilibrium truss model.
With these six equations serving as the basis of design, the
new ACI shear and torsion provisions become clear and ra-
tional.

SHEAR AND TORSIONAL STEEL DESIGN

Torsional steel

Transverse torsional steel—Assuming the yielding of
steel, f, = f,,» where f,,, is the yield strength of closed stirrups
provided for torsion, then the symbols 7, in Eq. (12) becomes
n; = Af,,/s, and the symbol T becomes T, = T,/¢. The tor-
sional transverse steel can be directly designed according to
Eq. (12):

A T, . a4
s 02A,f,,cot®

In Eq. (14) the angle 0 is limited to a range of 30 deg < 0
< 60 deg in order to control cracking. It has been shown by
Thurlimann (1979) that crack width increases very rapidly
when 8 moves away from this range. An angle of 8 = 45 deg
is recommended for reinforced concrete because this angle
represents the best crack control (Hsu, 1993). For prestressed
concrete, however, the angle for best crack control should be
less than 45 deg because of the longitudinal prestress. ACI
code provision suggests an angle of 37.5 deg for prestressed
concrete (MacGregor and Ghoneim, 1993).

The lever arm area A, depends on the thickness of the
shear flow zone ¢4, which, in turn, is a function of the applied
torsional moment, T,,. The larger the torsional moment T},
the larger the shear flow zone ¢, and the smaller the lever arm
area A,. These relationships can be derived theoretically
from the warping compatibility condition of the wall. For de-
sign practice, however, simplified expressions are given for
tyand A, as follows (Hsu, 1990 and 1993):

4T
ty = —— (15)
¢fC ACP
t
A, = Acp—idpcp (16)

where A, is the area enclosed by the outside perimeter of
concrete cross section, and p,, is the outside perimeter of the
concrete cross section. Substituting ¢, from Eq. (15) into Eq.
(16), A, becomes

2Tupcp
= - 17
A, =A, o A, (17
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Fig. 4—Various cross sections

For structural members commonly employed in buildings,
Fig. 4 (a), ACI Code suggests a simpler but less accurate ex-
pression:

A, = 0.854,, , (18)

where A, is the area enclosed by the center line of the outer-
most closed transverse torsional reinforcement. Eq. (18) may
under-estimate the torsional strength of lightly reinforced
small members by up to 40 percent and over-estimate the tor-
sional strength of heavily reinforced large members by up to
20 percent.

The transverse torsional bars required by Egs. (14) and
(17) or (18) should be in the form of hoops or closed stirrups.
They should meet the maximum spacing requirement of s <
py/8 or 12in.

Longitudinal torsional steel—The torsional longitudinal
steel can be designed according to Eq. (11) assuming the
yielding of steel, f,= f,4 where f,,is yield strength of longi-
tudinal torsional reinforcement. However, a more conve-
nient equation relating the torsional longitudinal steel to the
torsional transverse steel can be derived by equating Eq. (11)
to Eq. (12). Noticing in Eq. (11) that N,= Afys Where A/is
now defined as the total area of torsional longitudinal steel in
the cross section, and assuming that p,, = py,, where py, is de-
fined as the perimeter of the center-line of the outermost
hoop bars, we derive the ACI equation:

- ,( fyl)cotze (19)

The angle 0 is the same one used for transverse torsional
steel in Eq. (14). '

Minimum longitudinal torsional steel—In order to avoid a
brittle torsional failure, a minimum amount of torsional rein-
forcement (including both transverse and longitudinal steel)
is required in a member subjected to torsion. The basic crite-
rion for determining this minimum torsional reinforcement
is to equate the post-cracking strength T, to the cracking
strength T,
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T,=T (20)

Taking the angle © = 45 deg, the post-cracking torsional
strength T, of both solid and hollow sections can be predict-
ed from Eq. (14):

_2A,Af,,

T, = @1

N

The cracking torque of solid sections subjected to com-
bined torsion, shear and bending, T,,, can be predicted by
(Hsu and Hwang, 1977):

AC
T, =4/f % (22)
pL‘p

where f. and ./f/ are in pounds per square inch (psi). In
the case of hollow sections, Mattock (1995) suggested a sim-
ple relationship between the cracking torque of a hollow sec-
tion, (T.)potows @nd that of a solid section with the same
outer dimensions, (T,,)sig:

Lerhotton _ Ag 23)
(Tcr)solid ACP

where A, is the cross-sectional area of the concrete only and
not including the hole(s), while A, is the area of the same
hollow section including the hole(s). For solid sections, A g =
A, The cracking torque of solid and hollow sections can
then be expressed by one equation:

A
o= 4T AE (24)

cp

Inserting Egs. (24) and (21) into Eq. (20) gives

2,/ fc AgAcps

Adfy = =5 @5)

opcp
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Multiplying both sides of Eq. (25) by p/s gives

BT e

cp

The ratios A.,/A, and p;/p, on the right hand side of Eq.
(26) vary somewhat with the size of cross sections, because
the concrete cover is usually a constant specified by the code
for fire and corrosion protections. For sizes of cross sections
normally used in buildings, the ratios A /A, and p;/p,,, can
be taken as 1.5 and 0.83, respectively. Eq. (26) can then be
simplified to become:

A, fyv% = 25./fi 4, @7)

Minimum torsional reinforcement requires not only trans-
verse steel, but also longitudinal steel. The total yield force
of longitudinal torsional steel is obtained from Eq. (19) as-
suming 6 = 45 deg:

p
ALy = Afy (28)
Substituting A f},p;/s from Eq. (27) into Eq. (28) gives

Afy =251 A, (29)

Adding Egs. (27) and (29) results in

p '
A Fyr + Ay = ST A, (30)

The symbol A,in Eq. (30) is the total area of minimum lon-
gitudinal steel, Ay,,;,. Rearranging Eq. (30) gives the ACI
equation:

As min = %—(A;’)ph(f—”) G1)

fy/

To limit the value of Ay,,;,, the transverse steel area per
unit length, A/s, in the second term on the right-hand side of
Eq. (31) needs not be taken less than 25b,,/fy

Although Eq. (31) is derived from non-prestressed solid
and hollow sections, this equation is considered to be valid
for prestressed sections, because the level of prestress is as-
sumed to have a small effect on the minimum reinforcement.

The longitudinal torsional bars required by Egs. (19) or
(31) should be distributed uniformly along the perimeter of
the cross section. They should meet the maximum spacing
requirement of s,< 12 in. and the minimum bar diameter of
dp, 2 5/16 or No. 3 bar (Mitchell and Collins, 1976).

Shear steel
Transverse shear steel—The basic philosophy of shear de-

sign in the ACI Code remains unchanged in the 1995 ACI
Code. The shear resistance V,, is assumed to be made up of

792

two terms: V contributed by steel and V. contributed by con-
crete. The simplified expressions of V.. are given as follows:

For reinforced concrete
V.=2/f.b,d (32)

For prestressed concrete
v,d
V., = (0.6 [f'.+ 700—M"—)bwd (33)

where 2.0,/7" b, d<V,<50,/f. b,d

and V,d/M,<1.

The shear force V, resisted by steel is

\% -V“~V 34)
s = ([) c

Assuming the yielding of steel, f, = fyv» and the angle 6 =
45 deg, the shear web steel can be designed according to Eq.

5):

Av Vs Vu_q)vc

L =4 T ¢ 35
s S @, Tedl, G

The transverse shear steel calculated by Eq. (35) is re-
quired in the vertical legs of the cross section. The spacing s
is limited to d/2 when V. <4./f7b,d, and d/4 when
V,>4,[fI b,d . The angle 0 is taken as 45 deg in the ACI code.
It would be physically more logical to use the same 0 in Eq.
(35) and Eq. (14) in the case of combined shear and torsion.
This inconsistency between the new torsion provisions and
the old shear provisions will have to be resolved in the fu-
ture.

Longitudinal shear steel—According to the equilibrium
truss model, shear stress also demands longitudinal shear
steel according to Eq. (4). In the 1995 ACI Code, however,
longitudinal shear steel continues to be designed indirectly
by the so-called “shift rule” (Hsu, 1993). In this indirect
method, the bending moment diagram is shifted toward the
support by a distance of d, the effective depth. As a result, the
longitudinal bars required by bending are each extended by
a length d to take care of the longitudinal shear steel.

MAXIMUM SHEAR AND TORSIONAL STRENGTH

Maximum shear strength

The maximum shear strength of a cross section can be de-
rived from Eq. (6) by taking & = b,,, d, = 0.9d, and 6 = 30
deg. The compressive strength of concrete 6, in Eq. (6) was
found to be softened by the principal tensile strain in the per-
pendicular direction. Quantifying the softening effect by a
softening coefficient {, then 6; = {f. and the maximum
shear strength becomes:
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V, nax = 0.39Cf) bd (36)

Recent tests at the University of Houston (Zhang and Hsu,
1996) indicate that the softening coefficient { is inversely
proportional to J_ for concrete up to f'. = 15,000 psi (100
MPa). Assuming a conservative value of { = 26/ A/fc_ we ar-
rive at the time-honored ACI provision for maximum shear
stress of non-prestressed members:

= 10,/f. (37)

Maximum torsional strength

The maximum torsional strength of a cross section can be
derived from Eq. (13) by taking £ =0.9A,,/p;, A, =0.854 ,
06 =30degand o,;={f

n max

A
T = 066,21 (38)
Ph

Again, assuming that { = 26/,/f) gives the maximum
torsional stress:

Tn max Ph _
— =
oh

17./f) 39

Eq. (39) can be verified by the PCA torsion tests with con-
crete strengths from 2100 psi to 6500 psi (Hsu, 1968a). The
shear panel tests at University of Houston seems to suggest
that Eq. (39) is valid for concrete strength up to 15,000 psi
(100 MPa).

Interaction of shear and torsion

Hollow sections—In a large hollow box structure normal-
ly used in guideways and bridges, Fig. 4(c), the shear stress
due to shear and the shear stress due to torsion will be addi-
tive in one of the vertical walls. Consequently, a linear inter-
action relationship between the shear stress in Eq. (37) and
the torsional stress in Eq. (39) is adopted by the ACI Code:

(o) ()eeenm) o

In Eq. (40) V/b,,d can be conservatively taken as 2 A/?c-
for non-prestressed members and the right hand side be-
comes ¢(10A/f) .

The maximum thickness of the shear flow zone (corre-
sponding to the maximum torsional resistance of a cross sec-
tion) was found to be 0.84.,/p., (Hsu, 1993). This required
thickness is taken conservatively as A,;/pj, in the ACI Code.
Therefore, if the actual wall thickness ¢ is less than A,;/py,
the torsional stress in Eq. (40) should be increased propor-
tionally by substituting A ;/p;, = t in the second term that re-
sults in T,/1.7A,t. The thickness ¢ is taken at the location
where the stresses are being checked.
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Solid sections—In a member with solid cross section as
shown in Fig. 4 (a), the core of the cross section could be
used to resist shear stress due to shear, leaving the outer ring
area to resist shear stress due to torsion. Therefore, the stress-
es due to shear and torsion need not be additive. This favor-
able condition is reflected in the ACI Code by using a
circular interaction relationship between the shear stress in
Eq. (37) and the torsional stress in Eq. (39):

2 2
(V_) o LuPn sq)( Ve
byd) 114, b,d

Eqgs. (40) and (41) are used to check the cross section of a
member. If these conditions are not satisfied, the cross sec-
tion must be enlarged.

T @

OTHER DESIGN CONSIDERATIONS

Compatibility torsion

In the case of compatibility torsion, where a torsional mo-
ment in a statically indeterminate structure can be redistrib-
uted to other adjoining members after the formation of a
plastic hinge, ACI code allows the torsional moment to be
reduced to the cracking torsional moment under combined
loadings. For non-prestressed members, the cracking tor-

- sional moment under combined loadings is expressed by Eq.

(24). For prestressed concrete, however, the expression on
the right-hand side of Eq. (24) must be multiplied by a factor
which reflects the increase of cracking strength by the longi-
tudinal prestress. Using the well-known square-root factor
derived from either the Mohr stress circle (Hsu, 1984) or
from the skew bending theory (Hsu, 1968b), the cracking
torsional moment of hollow prestressed members is ex-
pressed as follows:

A
T, = oT,, = ¢4Jng;2’ /1 +Zj—ffe_|— 42)
cp ¢

where f., in the square-root factor is the average compres-
sive stress at the centroidal axis due to effective prestress af-
ter allowing for all losses. In the case of non-prestressed
solid members, f., = 0 and the square-root factor becomes
unity.

Threshold torque

In order to simplify the design processes, ACI Code al-
lows a small torsional moment in a structure to be neglected.
In the 1989 ACI Code (ACI 318, 1989) this “threshold
torque” was taken for solid sections as 25 percent of the
cracking torque which results in a torque of
0T Ay /Pey) -

In the case of hollow sections, it 1s proposed (Hsu, 1996)
that the threshold torque ¢ JJT (Acp 2y pcp) for solid sectlons
be multiplied by a factor for hollow sections, (A/A, )%, te-
sulting in:
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2

A
Ty = 0Jfe 5~ 43)
cp.

Eq. (43) is applicable to nonprestressed and prestressed
girders, because prestress does not significantly increase the
ultimate torques of girders. When the threshold torque for a
solid beam is viewed as a certain percentage (< 25 percent
and depending on reinforcement) of the ultimate torque, then
the threshold torque expressed by Eq. (43) for a hollow sec-
tion will be a certain percentage (depending on reinforce-
ment and wall thickness) of the ultimate torque, regardless of
prestress.

Location of torsional steel in shear flow zone

The internal torsional moment of a member is contributed
by the circulatory shear stresses acting along the centerline
of shear flow, Fig. 3. To be theoretically correct, the centroi-
dal line of the steel cage should be designed to coincide with
the centerline of shear flow. Because a steel cage is made up
of hoop bars and longitudinal bars, the centroidal line of the
steel cage is best represented by the inner edge of the hoop
bars, Fig. 4 (a) and (b). Define ¢ as the distance measured

from the outer face of cross section to the inner edge of the .

hoop bars. When the center line of the steel cage defined by
¢ lies in the middle of the shear flow zone with a thickness of
t4, then the theoretically correct case of design is:

¢ = 051, (44)

In the case of a hollow beam as'shown in Fig. 4 (b), the in-
ner concrete cover measured from the inside face of wall to
the inner edge of hoop bars should also be 0.5¢; in theory.
This theoretical requirement of the inner concrete cover is
replaced in the 1995 ACI Code by a provision (Section
11.6.4.4) specifying that the distance from the inside face of
wall to the centerline of the hoop bars shall be not less than
0.5A,,/py. This requirement is conservative, because the
thickness t; = A,;/py, represents the maximum thickness re-
quired to resist a maximum torque for the given outer cross
section. It is obvious that this provision is not intended to ap-
ply to the inner cover of large hollow cross sections with two
layers of hoop steel as shown in Fig. 4 (c).

In practice, it is sometimes difficult to satisfy Eq. (44), ¢4
= 2c, particularly in small cross sections where the relatively
large outer cover is dictated by fire resistance and corrosion
requirements. If z; < 2c, the lever arm area A,, calculated by
Eq. (17) may overestimate the true A, because the true A,
depends not only on the location of the concrete struts but
also on the location of the steel cage. Tests of pure torsional
members have shown (Hsu and Mo, 1985b) that the calculat-
ed torsional strengths will be safe if

t,21.33¢ . (45

If this condition is considered, the thickness ¢, calculated
by Eq. (15) may be limited to a minimum of ¢, = 1.33c. This
condition, however, is not serious because a small t; means
asmall torque T}, A small error of a small torque is not a con-
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cern in a member subjected to shear and torsion. For this rea-
son, the requirement of Eq. (45) is neglected.

Box sections with outstanding flanges

When the outstanding flanges are very thin as compared to
the height of the box section, the parameter Acpzlpcp for the
flanged section may be less than the same parameter for the
box section without flanges. This is conceptually wrong be-
cause the addition of flanges is supposed to increase the tor-
sional resistance which is proportional to this parameter.
Physically, this inconsistency means that the cross section is
not “bulky” enough and that St. Venant torsional stresses can
not flow into the flanges. When this happens, the outstanding
flanges should be neglected in the calculation of the cross-
sectional properties of A, A, and p,, (see section “Check
Outstanding Flanges” in the example problem).

DESIGN PROCEDURES

The design procedures for shear and torsion are given in a
flow chart in Fig. 5. The design steps are as follows:

(1) Calculate the shear force diagram and the torsional mo-
ment diagram. Check the factored shear force V,, and the fac-
tored torsional moment T, at the critical sections. For a beam
subjected to uniformly distributed load on the upper surface,
the critical sections are taken at a distance d from the support
for reinforced concrete, and at a distance 4/2 from the sup-
port for prestressed concrete. In the case of compatibility tor-
sion, T, is calculated by Eq. (42).

(2) Check the factored torsional moment T, by Eq. (43).
Torsion can be neglected in design if 7), is less than that cal-
culated by this equation.

(3) Check the size of cross section by the interaction Egs.
(40) or (41), as appropriate. If the appropriate combination
of shear stress and torsional stress is greater than the speci-
fied maximum stress, enlarge the cross section.

(4) Calculate the transverse torsional steel, A/s, by Eqgs.
(14) and (17) or (18). This transverse torsional steel must be
in the form of hoops or closed stirrups and must satisfy the
maximum spacing requirement.

(5) Determine the longitudinal torsional steel, A4 by Eq.
(19) based on strength, or by Eq. (31) based on ductility. This
longitudinal torsional steel must be uniformly distributed
along the perimeter of the cross section and must meet the re-
quirements of maximum spacing and minimum bar diame-
ter.

(6) Calculate the transverse shear steel, A,/s, by Egs. (32)
to (35). This transverse shear steel is required in the vertical
legs of cross section and must satisfy the maximum spacing
requirement.

(7) Arrange the transverse steel caused by shear and tor-
sion in two ways: (i.) In the case of small cross sections nor-
mally used in buildings, Fig. 4 (a) and (b), both the torsional
steel and shear steel are designed in the form of closed stir-
rups. As a result, the combined area for two legs is 24, + A,,.
This combined area must satisfy the minimum requirement
of 2A; + A, 2 50b,,5/f,,,. (ii.) In the case of large hollow sec-

‘tions normally used in guideways and bridges, Fig. 4 (c),

shear steel and torsional steel are designed separately for
each wall. The combined area (for one wall) of A, + A /2 is
used for the vertical wall where shear and torsion are addi-
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Fig. 5—ACI shear & torsion design procedures
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Fig. 7—Loading conditions and sections for design

tive. This combined area must satisfy the minimum require-
ment of A, + A,/2' > 25b,,5/f,,. The horizontal walls, which
are subjected only to torsional shear stress, can be designed
for A, only.
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EXAMPLE PROBLEM

Design the shear and torsional reinforcement of a guide-
way girder. A 12 ft-wide and 4 ft 2 in.-deep box girder with
overhanging flanges, Fig. 6 (a), was designed as an alterna-
tive to the double-tee girder used in the Dade County Rapid
Transit System, Florida. The standard prestressed girder in
this 22-mile guideway is simply supported and 80 ft long. It
is prestressed with sixty two 270K, 1/2 in., seven-wire
strands as shown in Fig. 6 (b). The total prestress force is
1366 kips after prestress: loss. The design of flexural steel is
omitted for simplicity. The net concrete cover is 1.5 in. (3.81
cm) and the material strengths are f. = 7000 psi (48.2 MPa)
and f, = 60,000psi (413MPa).

Sectional properties

L= 79t

h = 50in.

d = 40in. at 0.3L from support

t = 9.875in. (average of stem width)
b, =- 19.75in.

A = 23614in?

I = 768336in*

y; = 2034in.

Y, = 29.66in.

Loading criteria

The standard girders are designed to carry a train of cars,
each 75', 0" long. Each car has two trucks with a center-to-
center distance of 54', 0". Each truck consists of two axles 6',
6" apart. The crush live load of each car is 115.5 kips. The
maximum amount of web reinforcement was obtained at the
section 0.3L from the support under a derailment load, which
consists of two truck loads located symmetrically at a dis-
tance 10', 6" from the midspan, Fig. 7 (b). Each axle load is
taken as one-fourth of the crush live load (115.5 kips/4) with
100 percent impact and a maximum sideshift of 3 ft. The
load factor is taken as 1.4.

The girder is also subjected to a superimposed dead load
caused by the weight of the track rails, rail plinth pads, power
rail, guard rail, cableway, acoustic barrier, etc. At derail-
ment, this superimposed dead load is assumed to produce a
uniform vertical load of 0.88 kip/ft and a uniformly distrib-
uted torque of 0.71 kip-ft/ft. This torque is neglected in the
calculation because the magnitude of the distributed torque
is small and because the torque is acting in a direction oppo-
site to the derailment torque.

Derailment load per axle

P, = 1,4(#)(2) = 80.85 kip/axle

Derailment torque per axle

T,, = 1-4(1—1?)(2)(3) =242.5 k-ft/axle

Girder weight (assumed concrete density of 144 1b/ft3 and
load factor of 1.4)
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_ 1 42361.4(144)
"ue = L42700)
Superimposed dead weight (load factor of 1.4)

=3.31 k/ft

= 1.4(0.88) =1.23 k/ft

Factored shear, torque, and bending moment
Refer to Fig. 7(b), V,,, T,, and M, at 0.3L from support are:

V=W, +w, )O02L)+2P,

Il

(3.31 + 1.23)(0.2)(79) + 2(80.85) =233.4k

T, = 2T, , = 2(242.5) = 485 k-ft

<
1

1 1
w = 3 W g+ W, JLO3L) = 5(w, . + w, )(03L)* +

2P, 1 (0.3L)

= %(3.31 +1.23)(79)(23.7)
_ %(3.31 +1.23)(23.7)% +2(80.85)(23.7)

= 6807 k-ft

Check outstanding flanges
Refer to Fig. 6 (a), the parameter Acp2/pcp is determined as
follows:

Neglect overhanging flanges
A, = T3(8) + %(73 +70.5)(42) = 3597 in.?
Pep = 73+70.5+2(50)=243.5 in.

2
Ay _ 3597°
Pep 2435
Include overhanging flanges

=53.135 in.3

A, = T3(8)+ %(73 +70.5)(42) + 2(35.5)(7.125)
=4103 in.2

= 144 +70.5 + 2(6.25) + 2(78.75) = 384.5 in
A, 4103°

Pep T 3845
Neglect outstanding flanges and use Acpzlpcp =53,135 in.3

in? N.G.

Check threshold torque

A, = 3597 -(52x33.5)=1855 in.2
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W_ £ = 085A/700012§355 = 1,005,000 in.-Ib

=837 k ft <485 k-ft

Factored torsional moment needs to be considered in de-
sign.

Check cross section
Assume a clear concrete cover of 1.5 in. and No. 4 bars for
web reinforcement:

A= %[(73 ~3.5)+(70.5 - 3.5)1(50 - 3.5)= 3174 in.2

Ph=(73-35)+(70.5-35) +2(50~3.5)=2295 in. -

32-23.7
32

d=y,+e=20.34 +19.47 = 39.81 in. at 0.3L from support

e=(29.66-5) - 20=19. 47 in. at 0.3L from support

d=0.82=0.8(50) = 40 in. governs
b,, =2t =2(9.875) = 19.75 in.
b,,d = 19.75(40) = 790 in.2

The interaction equation for hollow box sections is

I AWES A,
(bwd) (17tht) (b d+84fc)whent<p_h

Aon _ 3174
pn 2295

V. T, '\ _ 233,400
(m)+(1.7tht) =990 F

=295 + 109

=13.8in.>¢=9.875in.

485(12, 000)
1.7(3174)(9.875)

= 404 psi

V“dSI

u

‘ V.d
- [0.6 fr +7002% ]bwd where

Vid _ 233.4(40)
M, ~ 6807(12)

u

=0.1143<10.K.

= [0.6./7000 + 700(0.1143)](790) = 102,900 Ibs

Ve i = 2Jf5 byd = 2/7000(790)= 132,200 Ibs
govermns.
Ve =) 132, 000
¢(de fc) - 0.85( = +8A/7000)

=0.85(167 + 669) = 711 psi > 404 pSi OK.
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Design of torsional hoop steel

_ 2Tupcp 2(485)(12)(243.5)
Ao = Aep= of A, 3597 - 0.85(7)(3597)
= 3464 in.2

Assume 0 =37.5 deg as recommended by the Code provi-
sion for prestressed members: '

4, _ T, 485(12)
s ¢2A0fyvcot9 ~ (0.85)(2)(3464)(60)(1.303)
- =0.0127 in.*in.
P
Smax = gh 222?5--2871n > 12 in. 12 in. spacing

12in. spacing governs.
Design of torsional longitudinal steel

4, = ‘%'ph(]{;v)cot 0 = (0.0127)(229.5)(1)(1.303%)

=5.0in.2
Check minimum limitation for A /s:

A, _ 25b, _ 25(19.75)
s~ f, 60,000

=0.0082 in.%in. < 0.0127 in.%in.

A/ min = 5—“—1{}5 A - (%)Ph(%))

_ 5./7000(1855)
= o —(0.0127)(229.5)(1)

=12.9-29=10.0in.2 governs.

Select 36 No. 5 longltudmal bars: A,=36(0. 31) =11.2in.2
> 10.0in.2

) DeS|gn of shear steel

Ve =V min=132.2 kips

A, _ Vu-0V. _233.4-085(1322)
s odf,, 0.85(40)(60)
=0.0593 in.?

4,/f. b,d = 4J7000(790) = 264,400 Ibs = 264.4 kips

14 2334

0= g Ve= G5 1322

798

= 142.4 kips < 264.4 kips

Smax =

d _40_,.. .
i) =20in. < 12 in.

Spacing of 12 in. goverﬁs.

Transverse steel for vertical walls
Transverse steel in the vertical walls is contributed by both

shear and torsion:

At lAv 1 T
—4+-— = 0.0127 + =(0.0593) = 0.0423 in.“/in.
s 25 2

(5+3%3),. -
25 min—

— 0.00823 in.%in. < 0.0423 in.%/in. O.K.

25(19.75)
60, 000

Select 2 layers of No. 5 bars in each vertical wall at 12 in.
spacing:

2((;231) = 0.0517 in.%/in. > 0.0423 in.%/in. O.K.

Transverse steel for horizontal walls

Transverse steel in the horizontal walls is contributed by
torsion only:

A .
?' =0.0127 in.in.

Select 2 layers of No. 3 bars in each horizontal wall at 12
in. spacing:

2(0.11)
12
The transverse steel in the top wall should be added to the
flexural steel required in the top flange acting as a transverse
continuous slab.

=0.0183 in.%/in. > 0.0127 in.%in. O.K.

Arrangement of reinforcing bars
The arrangement of the reinforcing bars for shear and tor-

sion is shown in Fig. 8. This steel arrangement could be con-
servatively used throughout the length of the girder.

CONCLUSIONS
This paper provides the background information for the

new ACI shear and torsion provisions. This background in-
formation is presented in a systematic manner. First, from
the equilibrium (plasticity) truss model we derive a set of
three equations for shear and another set of three equations
for torsion. These two sets of equilibrium equations are
shown to be similar. In each set of three equations, the first
equation relates the external shear (or torque) to transverse
steel, the second to longitudinal steel and the third to con-
crete struts. '
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Fig. 8—Steel arrangement for shear and torsion

Second, torsion design equations for transverse and longi-
tudinal steel are logically derived from the first two of the set
of three equilibrium equations. In this derivation, the three
physical concepts are emphasized, namely, the thickness of
shear flow zone, the lever arm area, and the torsional steel re-

quired to prevent brittle failure. In contrast to the rationality

of torsion design, the shear design method remains empiri-
cal. “Concrete contribution” is subtracted from the shear
stress before the transverse steel is designed. The longitudi-
nal steel is provided indirectly by the “shift rule,” rather than
directly from the equilibrium condition.

Third, the maximum shear and torsional strengths of a
cross section are derived from the third of the sets of three
equilibrium equations relating the external shear (or torque)
to the stress in the concrete struts. Interaction relationships of
shear and torsional strengths are given for hollow and solid
sections. These interaction equations are used to check the
size of cross section. '

Fourth, various design considerations are presented, in-
cluding compatibility torsion, threshold torque, the location
of torsional steel in shear flow zone, and the outstanding
flanges. The whole design procedure is summarized in a
flow chart and illustrated by an example problem.

At present, three formulas in the 1995 ACI Code are appli-
cable only to solid sections. These formulas are generalized
to include hollow sections as shown in Egs. (31), (42) and
(43).
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