COMPARISONS OF CONCRETE SLENDER WALL SOFTWARE WITH FULL-SCALE EXPERIMENTS

GLORIANA MOUA

PRESENTATION OVERVIEW

- 1. PROJECT GOALS AND PURPOSE
- 2. 1982 FULL-SCALE TESTING
- 3. RESULTS AND IMPACT OF TESTING
- 4. COMPARISON WITH CURRECT DESIGN SOFTWARE
- 5. CONCLUDING SUMMARY

MY PROJECT GOALS

1. Understand ACI design provisions and how they were derived from the original full-scale testing.

2. Try to duplicate panel test results in multiple different software programs.

3. Analyze and compare results. If software results vary from original testing, pinpoint user assumptions that may have caused results to differ.

4. See which software programs could be contributors to the discrepancies within the engineering community.

PROJECT PURPOSE

Ensure life safety

• Current design provisions were empirically derived from experimental full-scale testing

Photo Source: John Lawson

1980-82 ACI-SEASC

• WHAT WAS THE REASONING FOR TESTING?

There was an increase in concrete and masonry walls usage due to economy, architectural appearance, fire safety and ease of construction.

• WHAT WERE THE GOALS FOR TESTING?

Analyze behavior of slender walls when subjected to both lateral and eccentric axial loads.

WHAT WERE THE RESULTS?

1. A fixed limitation of height-to-thickness ratio was not necessary for slender wall designs.

2. Each case should be analyzed based off strength and deflection of wall, including P-delta effects.

TEST REPORT on SLENDER WALLS

netican Concrete Institute

Structural Engineers Association of Southern California

ACI-SEASC Task Committee on Slender Walls @

9-1/2" PANEL

5-3/4" PANEL

TEST PANEL DEFLECTION

TEST PANEL CRACKING

SUMMARY REPORT

- Written by SEAOSC Slender Wall Task Group in 2006
- Incorporates adjustments as a result of lack of contact area in original testing.

ACI 318-19 SEC. 11.8

11.8—Alternative method for out-of-plane slender wall analysis 11.8.1 *General*

11.8.1.1 It shall be permitted to analyze out-of-plane slenderness effects in accordance with this section for walls satisfying (a) through (e):

(a) Cross section is constant over the height of the wall (b) Wall is tension-controlled for out-of-plane moment effect (c) ϕM_n is at least M_{cr} , where M_{cr} is calculated using f_r as provided in 19.2.3

(d) P_u at the midheight section does not exceed $0.06f_c A_g$

11.8.3 Factored moment

11.8.3.1 M_{μ} at midheight of wall due to combined flexure and axial loads shall include the effects of wall deflection in accordance with (a) or (b):

(a) By iterative calculation using

$$M_u = M_{ua} + P_u \Delta_u \tag{11.8.3.1a}$$

where M_{ua} is the maximum factored moment at midheight of wall due to lateral and eccentric vertical loads, not including $P\Delta$ effects. Δ_u shall be calculated by:

$$\Delta_u = \frac{5M_u \ell_c^2}{(0.75)48E_c I_{cu}} \tag{11.8.3.1b}$$

where I_{cr} shall be calculated by:

$$I_{cr} = \frac{E_s}{E_c} \left(A_s + \frac{P_u}{f_y} \frac{h}{2d} \right) (d-c)^2 + \frac{\ell_w c^3}{3}$$
(11.8.3.1c)

and the value of E_s/E_c shall be at least 6. (b) By direct calculation using:

$$M_{u} = \frac{M_{ua}}{\left(1 - \frac{5P_{u}\ell_{c}^{2}}{(0.75)48E_{c}I_{cr}}\right)}$$
(11.8.3.1d)

11.8.4.1 Out-of-plane deflection due to service loads, Δ_s , shall be calculated in accordance with Table 11.8.4.1, where M_a is calculated by 11.8.4.2.

Table 11.8.4.1—Calculation of Δ_s

Ma	Δ_s	
≤(2/3) <i>M</i> _{cr}	$\Delta_s = \left(\frac{M_a}{M_{cr}}\right) \Delta_{cr}$	(a)
>(2/3)M _{cr}	$\Delta_{s} = (2/3)\Delta_{cr} + \frac{(M_{a} - (2/3)M_{cr})}{(M_{n} - (2/3)M_{cr})}(\Delta_{n} - (2/3)\Delta_{cr})$	(b)

11.8.4.2 The maximum moment M_a at midheight of wall due to service lateral and eccentric vertical loads, including $P_s\Delta_s$ effects, shall be calculated by Eq. (11.8.4.2) with iteration of deflections.

$$M_a = M_{sa} + P_s \Delta_s \tag{11.8.4.2}$$

11.8.4.3 Δ_{cr} and Δ_n shall be calculated by (a) and (b):

(a)
$$\Delta_{cr} = \frac{5M_{cr}\ell_c^2}{48E_c I_g}$$
 (11.8.4.3a)

(b)
$$\Delta_n = \frac{5M_n \ell_c^2}{48E_c I_{cr}}$$
 (11.8.4.3b)

CONCERNS

- 1. Concerned program results aren't agreeing with original experimental testing and could pose safety issues to designs.
- 2. The ACI Committee 551 questions whether it is appropriate to deviate from the approved ACI provisions when designing any slender or tilt up walls.

Slender walls are very sensitive to inaccuracies which can lead to a quick strength and stiffness reduction resulting in large deflections.

SOFTWARE

Software X

	Concrete	Slender Wall	
General Dimensions	Loads Load Combination	ons	
None			
None			
Wall Material	Concre	ete	Masonry
Material Properties		<i>t</i> .	
fr : Punture Modulus	4.0 💌 🔺 KSI	tyλ. It Wt Factor	67.50 • KSI
5.0 * SORT (fc)	7.5 * SORT (fc)	fr =	474.342 psi
Ec "57" "33"	3,540.0 ksi		
Concrete Wt	150 • • pcf	Max Pu/Ag = f'c *	0.060
Thickness & Rebar			
Wall Thickness	6 ▼ • in	Define Rebar Spacing Bar Size	4 🗸
Rebar "d" Distance	er O Each Face 3.0 in	# Bars in	Width 4.0 •
		Define # bars in	
Wall Weight	75.0 psf	section width	
Analysis Settings Ieff used for deflection	Ieff based on Mu @ Element	Icracked Full Height	
Temperature Differential across	thickness		
Minimum Vertical Steel : (your entry)	* bd	0.0020 💌 🔺	
Minimum allowed (Span/Deflection) ra Apply 0.75 Factor used in ACI 5	tio 30-11 Eq. 14.8.3	150.0	
Number of wall elements for FE solve	r to use :	50 💌	
General Dimensions Loads	Load Combinations		
1 Story	2 Story		
A Clear Height	24.0 • ft	Wall Support Condr	Top & Bottom Pinned
B Parapet height	0.6670 • • ft		Top Pinned, Bottom Fixed
			rop nee, bottom nixed
Height / Thickness Ratio	48	.0 :1	
Reveal Data			
Reveal Depth	0 🖨 in		
	D	esign Width of wall portion ("strip width	") 48.0 • in

		Concrete	Slender Wall	
eneral	Dimensions	Loads Load Combinat	tions	
None				
Wall	Material	Conc	rete	Masonry
Material	Properties			
fc		4.0 • • ksi	fy	67.50 • • k
fr : Ruph	ure Modulus		λ Lt Wt Factor	1.0
		1	-	
	5.0 * SQRT (fc)	7.5 * SQRT (fc)	fr =	474.342 p
	5.0 * SQRT (fc)	7.5 * SQRT (fc)	fr =	474.342 p
Ec	5.0 * SQRT (fc)	7.5 * SQRT (fc) 3,540.0 ksi	fr =	474.342 p
Ec	5.0 * SQRT (fc)	7.5 * SQRT (fc) 3,540.0 ksi	fr =	474.342 p

Thickness & Rebar							
Wall Thickness		9.880 × 🔺 in		Rebar			
Bar Location(s)	@ Center	O Each Face	Define Rebar Spacing	# Pare in Width	4 ¥		
Rebar "d" Distance		4.940 in		# Dars in wider	4.0		
Wall Weight		120.0 psf	Define # bars in section width				
Analysis Settings			-				
Ieff used for deflection		Ieff based on Mu @ Element	Icracke	ed Full Height			
Temperature Differe	ential across thick	ness					
Minimum Vertical Steel : ((your entry) * bd			0.0020 * •			
Minimum allowed (Span/D	effection) ratio			150.0			
Apply 0.75 Factor u	used in ACI 530-11	Eq. 14.8.3	L				
Number of wall elements	for FE solver to u	se :		50 💌 🔺			
General Dimensions	Loads	Load Combinations					
Wall Type							
1 Story	1	2 Story					
A Clear Height		24.0 • • ft	Wal	Wall Support Conditions			
				Top R botto	ottom Fixed		
B Parapet heigh	t	0.6670 • • ft		Top Free, Bot	ttom Fixed		

29.150 :1

M Reveal Rebar

No Change

Design Width of wall portion ("strip width")

Drape Bars

Add Bars

48.0 • 🔺 in

Height / Thickness Ratio	
Reveal Data	
Reveal Depth	0.280 🖨 in
F Reveal Start Loc	t ft
G Reveal End Loc	24.667 🚔 ft

Software Y

27	
Grid Setup)
Grid Dir	ectior irectic
Edit Grid Coordir	dlines nate (1
Numb [1]	er
[2] [3]	
3	

	G	rid Setup			
on C Y Direction		−Grid Directio ◯ XDirect	on tion (Y Direction	
t) 0		– Edit Gridline Coordinate	es (ff)		(
Coordinate 0.00 ft 2.00 ft 4.00 ft		Number [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]	Coordinate 0.00 f 3.00 f 6.00 f 9.00 f 12.00 f 15.00 f 24.00 f 24.67 f	e t t t t t t t	~

Plate Thickness		Reinforcement		
Label W9.6	Thickness (in) 9.6	Label Gr67.5	fy (ksi) 67.5	Es (ksi) 28600
Label W9.6	Thickness 9.60	Label	fy 67.50	Es
VV0	6.00		01.00	

Plate Design Criteria

Label: W9.6_1C#4			einforcement R	atios (%) —		Reinfo	rcemen	nt Location	(in)		To Horiz Berg	_
Reinforcement Layout One curtain Two curtains		м	inimum: 0.1 aximum 0.2	contal V	0.1735 0.1737	Curtain	1 4.1	orizontal 16	4.66	z J	To Vertical Ba	°S
Allow one curtain in thick walls	[Chk-1]		Allow minimu	m below cod	e [Chk-2]							
Label	Curtai	[Chk	Rmin (H)	Rmax (H)	Rmin (V)	Rmax (y) [CI	hk	Ct-1 (H)	Ct-1 (V)	Ct-2 (H)	Ct-2 (V)
W9.6_1C#4	One	No	0.100	0.200	0.174	0.1	74	No	4.16	4.66		
W6_1C#4	One	No	0.100	0.200	0.278	0.2	78	No	3.85	3.35		
W6_2C#4	One	No	0.100	0.200	0.278	0.2	78	No	3.50	3.00		

Uniform Line Loads

Label Vertical6	Load (Case	Case					
Eccentricity (in) 6	Forces (klf) Wx 0	Wy -0.32	Wz 0				
Label			Case	Wx	Wy	Wz	Ec
Vertical9.6			A	0.000	-0.320	0.000	7.800
Vertical6			A	0.000	-0.320	0.000	6.000

Stiffener Cracking Coefficients -Cracking coefficients-Label: Inertia (ly): Inertia (Iz): Torsion (J): Area: SCC1 0.35 0.35 0.35 1 Inertia (Iz) Torsion (J) Label Area Inertia (ly) SCC1 1.000 0.350 0.350 0.350

Software Z

Property	Value
🖷 Units system	English 🗸
🗹 Analysis method	Simplified
🗹 Design code	ACI 318-19
Geometry	
Number of levels	1
🗹 Height	24 ft
🗹 Parapet height	0.667 ft
🗹 Length	4 ft
Thickness	6 in
🗹 Bottom panel	0 ft
It is foundation level	Pinned
Zevel restraints	Pinned
Øpenings	<openings></openings>
Additional strips	<strips></strips>
🗁 Materials	
Material	Senior Project
Lightweight concrete	

COMPARISONS

Service Level Deflection

Moment

CONCLUDING SUMMARY

- 1. It's important to understand the true behavior of slender walls.
- 2. Different software will require users to make assumptions.
- 3. Decide whether the assumptions are appropriate and adjust accordingly.
- 4. Know that software is a tool and can be used incorrectly.

QUESTIONS??