Interactions of Calcium Sulfoaluminate Belite Cement with Alkanolamines as Admixtures

Tu-Nam Nguyen ¹, Elsa Qoku ¹, Burak Uzal ², Angus Wilkinson ^{3,4}, Kimberly Kurtis ^{1,4}

¹ School of Civil and Environmental Engineering, Georgia Tech, 30332, Atlanta USA

- ² Civil Engineering Department, Abdullah Gül University, Kayseri 38080, Türkiye
- ³ School of Chemistry and Biochemistry, Georgia Tech, 30332, Atlanta USA
- ⁴ School of Material Science and Engineering, Georgia Tech, 30332, Atlanta, USA

Motivation

Lower embodied-carbon cements

- Portland limestone cement (Type IL)
- Blended cements (fly ash, slag, silica fume)
- Limestone calcined clay cement (LC3)
- Calcium sulfoaluminate cement (CSA)
- Can we use admixtures to tailor lower embodied-carbon cement performance?
 - Commonly used admixtures in PC
 - Dispersants
 - Set controllers

Fuel Derived CO2e

Raw Material Related CO2e

Burris, Lisa, Kimberly Kurtis, and Tom Morton. *Novel Alternative Cementitious Materials for Development of the Next Generation of Sustainable Transportation Infrastructure* [Tech Brief]. Georgia Institute of Technology, 1 Oct. 2015. United States Federal Highway Administration, Office of Infrastructure Research and Development, Report No. FHWA-HRT-16-017, <u>https://rosap.ntl.bts.gov/view/dot/35928</u>.

What is CSAB?

• CSA

- Ye'elimite + anhydrite + water \rightarrow ettringite + AH₃
- B(elite)
 - C_2S + water \rightarrow CH + C-S-H
- Applications similar to Type III PC
- Shrinkage compensating

 $\bigcirc C_4A_3\overline{S} \bigcirc C_2S \bigcirc C_3(A,F) \bigcirc C\overline{S}H_x \bigcirc CaCO_3$

Relative Phase Weight (%)

Courtesy of Prasanth Alapati

Objective

- How do alkanolamines (as an admixture) affect CSAB hydration in early ages?
 - Phase formation
 - Structural build-up
 - Microstructure
- Why alkanolamines?
 - Commonly used in PC
 - Increases compressive strength
 - Increases degree of hydration

What are Alkanolamines?

- Ethylene/propylene oxide + ammonia
- Two most common:
 - Triisopropanolamine (TIPA, C₉H₂₁NO₃)
 - Triethanolamine (TEA, C₆H₁₅NO₃)
- Also in this study:
 - Diisopropanolamine (DIPA, C₆H₁₅NO₂)
- Uses in cement:
 - Grinding aids
 - Improve particle fineness and size distribution
 - Prevent agglomeration
 - Improve grinding efficiency
 - Set controller
 - Reduce/elongate setting time
 - Accelerate/decelerate hardening

Materials and Methods

- Commercial CSAB from Netherlands
- Commercial alkanolamines (>99%)
- 0.45 w/c
- 0.02% alkanolamine by weight of cement

https://www.tainstruments.com/

new-tam-air/

https://rigaku.com/products/x-raydiffraction-and-scattering/xrd/miniflex

https://www.labwrench.com/equipment /15975/exstar-tg-dta7000-series

https://www.anton-paar.com/corp-en/products/ details/rheometer-mcr-102-302-502/ https://mcf.gatech.edu/tools/ hitachi-su-8230-sem/

Rate of Reaction by Calorimetry

- Similar behavior between:
 - Control and TIPA
 - TEA and DIPA
- Longer latent period with alkanolamine samples
- All alkanolamines
 - Enhance shoulder
 - Decrease heat between ~9 24 hours
 - Decrease cumulative heat

In-situ XRD Method

- Internal standard
 - 15% quartz
 - Mixed for 5 minutes
- Sample holder

8

- Standard 2 mm deep powder sample holder
- Custom-fabricated magnetic ring
- 8-micron thick Kapton foil

Ring and sample holder

Gr Georgia Tech

CSAB paste sample

In-situ hydration by XRD

- Slower rates of ettringite formation with alkanolamines
 - Slightly 0 ~6 hours
 - More significant ~6 ~48 hours
- Decrease in ye'elimite dissolution rate for s¹⁶ TIPA containing sample
- Greater ye'elimite consumption
 - Decrease in ettringite formation
- Other phases
 - Anhydrite shows similar trends as ye'elimite
 - Decrease in dissolution rate at ~6 ~18 hours
 - Greater consumption in alkanolamine samples Ye'elimite + anhydrite + water \rightarrow ettringite + AH₃
 - No consumption of C2S and C3A

Product Formation from TGA

- Alkanolamines affect ettringite formation more than AH3
- TIPA has greater effect than TEA or DIPA
- Alkanolamines affect ettringite and AH3 differently at 6 hours vs. later
 - TIPA increase hydration products at 6 hours, but decreases later
 - TEA and DIPA have little affect at 6 hours, less at 24 hours, and greater ettringite later

Amplitude-sweep Oscillatory Rheometry Method

- Apparatus
 - 50 mm parallel plates
 - 80 grit sandpaper
 - 1 mm gap
 - 25 °C
- Procedure
 - Frequency: 10 rad/s
 - 24 points over 0.001% 1% strain
- Results
 - Storage modulus, G' (elastic behavior)
 - · Loss modulus, G" (viscous behavior)
 - Limit of linear viscoelastic region

Courtesy of Prof. Burak Uzal

Courtesy of Prof. Burak Uzal

Rheology by Amplitude-sweep Oscillatory Rheometry

- Greater G' and G"
 - Higher stiffness
 - Lower workability
 - Only slightly, significant differences are on orders of magnitude
- Larger linear viscoelastic region in samples with alkanolamines
- "Curving out" behavior in TEA and DIPA

Rheology by Amplitude-sweep Oscillatory Rheometry

- Same data, different visualization
- Greater yield stress in samples with alkanolamines
 - TIPA > DIPA > TEA
- Behavior similar to strain hardening in TEA and DIPA containing samples
 - Also behaved similarly in calorimetry
- These properties may be beneficial in 3D printing applications

SEM

- Ongoing work
- In PC:
 - Affect C-S-H and CH morphology
 - Lack of agreement about ettringite morphology
- XRD and TGA results suggest possibility of poorly crystalline ettringite
- Could changes in rheology result from morphology?

CSAB paste at 2 hours of hydration

Summary

- Alkanolamines do affect hydration of CSAB differently than PC
 - TEA and DIPA delay hydration peaks
 - All decrease in heat of hydration
 - Changes in hydration product amount
 - All increase stiffness and decrease workability
 - Ongoing work to link those changes to morphology
- Possibility to use alkanolamines to tailor desired properties
 - Rheology
 - Set time
 - Dimensional stability
 - Strength
- Can extend to other systems that form ettringite

Acknowledgements

Tom Fitzgibbons Jolee Dominowski

Kimberly Kurtis Angus Wilkinson

Elsa Qoku

Kurtis Group

Questions?

Tu-Nam Nguyen tnguyen836@gatech.edu

CSAB and Quartz Calorimetry

XRD Anhydrous CSAB

Phase	Weight (%)
Anhydrite	19.0
Ye'elimite	36.5
Calcite	6.5
C2S	18.2
Mayenite	2.5
C3A	5.9

In-situ XRD C2S and C3A

Portland Cement Rheology

