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Using Computer Vision to Predict Interlayer Bond Strength from Early-Age Properties
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Human Vision
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Human ‘Post Processing’
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Visual Inspection

Concrete Soil Lumber Welds
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| Operator Variability
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Camera ‘Vision’
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Detector Material

Typical VIS-IR Detection Range

Si Silicon 300 nm - 1.0 gm
InGaAs Indium Gallium Arsenide 900 nm - 1.7 pm
Ge Germanium 800 nm - 1.6 gm
PbS Lead Sulfide THmM - 2.8 ym
PbSe Lead Selenide Tum-4.5pum
InSb Indium Antimonide 2Pm-5pm
HgCdTe (MCT) Mercury Cadmium Telluride 2 pPm =14 pm
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What is there to see beyond the ‘visible’ range?

Contrast Level Increases with Distinct Water Absorption Peaks

Visible

SWIR at 1450 nm

SWIR at 1920 nm

Water absorption peak shows highest contrast at 1920 nm, enabling contrast
differentiation and reduction of false defect counts.
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Multispectral Imaging and Hyperspectral Imaging

Multispectral Imaging Hyperspectral Imaging

(h) Hyper data cube |

b () Focusing lens

(e) Prism-grating-prism

Scan drrectron
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(d) Collimating lens

y (a) Spatial scene
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Hardened Concrete in SWIR

Table 1. Methodology and analysis of concrete quality assessment with spectral imaging from research papers.

Methodology
. . Characteristic
Device Wavelength Resolution Sanc'; }isc.gest Pre-Processing Analysis Absorption
. The feasibility of short-wave infrared spectrometry in assessing water-to-cement (wfc) ratio and density of hardened concrete [13]
lzzﬁﬁﬂldih;‘&{ standard normal  partial least square
concraic specimen variate discriminant
pe HvSpex P ratios Savitzky—oOlay IClative persentage
SW'KE 20m smoothing difference
Field vortab] Analysis of concrete reflectance characteristics using spectrometer and VNIR hyperspectral camera [14]
spectrometer concrete specimen information
GER-3700 and ASIA  350-2500 nm or band ~ withdifferent w/c ipation exbractiorewith 1950
Eagle VNIR 400-970 nm 7[')‘4“;' 1[;4'0 TgaaesTaiic froy Lo norma : ENVI software, nm
hyperspectral m_fgin..gﬂ._m?ﬁ’ms processing in Excel
camera R
Identifying the effects of different construction practices on the spectral characteristics of concrete [15]
normalization by . -
concrete samples dividing the analy=is ot variance,
. i i lysis of the
Fieldspec Pro not with different spectrncwith anawys 450 nm, 1380 nm
spectroradiometer 350-2500 nm specified treatments (clnn‘l*rnl, the calibration increasing of thfa and 1850 nm
no cure, cool cure, s m reflectance in major
heat cure. ..} P regions
(spectralon panel)
Reflectance spectroscopy as a tool Lo assess the quality of concrete in situ [16]
465 nm (iron
“Fieldspec Pro 3700 cement pastes with logistic regression,  oxides), 1140 nm,
FRQ” -SWIR 385-2485 nm reflectance  different w/c ratios normalization artificial neural 1270 nm, 1450nm
spectrometer spectra and curing times network (hygroscopic
water), *
Assessment of Concrete Degradation with Hyper-spectral Remote Sensing [11]
lculation of
concrete samples first and second carcuia >
A P correlation with 440 nm, 1393 nm,
R 400-2500 nm 2nm exposed incarbon - Orfe derval®  degradation depth, 1930 nm, 2127 nm,
fioxide and refloone multivariant 2340 nm
solution of sa statistical analysis
Non-destructive chemical analysis of water and chlorine content in cement paste using near-infrared spectroscopy [12]
NIR-Spectrometer cement test pieces 1935 nm(water),
b © with different types . - 2257 nm
(FT-NIR Rocket, 900-2600 nm not f binders baseline and analysis of peak (Friedel’s salt),
ARCoptix, specified ?onta inin bias correction wavelengths 1412 nm (Ca
Switzerland) loride] & (OH),), 1780 nm
ride ions (Ettringite)
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Notable historical information

Ptacek et al., 2021
https://doi.org/10.3390/
mal4143848

observable after hardening
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Reflectance

Early Age Insight from SWIR
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Machine Vision vs Computer Vision

GO gle computer vision machine vision venn diagram X § G Q
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Setting

ACI Concrete Terminology (ACI CT-23)

initial setting — a degree of stiffening of a cementitious mixture less than final set, generally
stated as an empirical value indicating the time required for the cementitious
mixture to stiffen sufficiently to resist, to an established degree, the
penetration of a weighted test device. (See also final setting )

final setting — a degree of stiffening of a cementitious mixture greater than imitial setting,
generally stated as an empirical value indicating the time required for
the cementitious mixture to stiffen sufficiently to resist, to an established
degree, the penetration of a weighted test device. (See also initial setting.)

set time — the lapsed time from the addition of mixing water to a cementitious mixture

until the mixture reaches a specified degree of ngidity as measured by a
specific procedure.

‘empirical value’ indicating sufficient stiffness to resist
penetration as measured by a specific procedure

VISION SETTING BONDING

(ﬂ% Designation: C403/C403M - 23

ulil

INTERNATIONAL

Standard Test Method for
Time of Setting of Concrete Mixtures by Penetration
Resistance’

Sieve out +#4 material (4.75mm)

Initial set: Penetration resistance = 500 psi

Final set: Penetration resistance = 4000 psi
Biggest and smallest needle: 29mm & — 4.5mm &
First test recommended at: 3 to 4 hours!

(ﬂ_glh? Designation: C807 - 21

ull

INTERNATIONAL

Standard Test Method for
Time of Setting of Hydraulic Cement Mortar by Modified
Vicat Needle'

Time of set: Penetration resistance = 300g 10mm
Needle size: 2.0mm @
First test recommended at: 30 min
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Effect of temperature

+25°F

Fig 4.6—FEffect of temperature and brand of cement on setting time characteristics of concrete mortars (Tuthill and Cordon

1955).
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Setting at early times
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Small increments of force
required to penetrate 1 inch

VISION SETTING
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Setting Experiments

* Focused on a commercially available 3DCP mortar mix
with an ICC-ES report for design values.

« Manipulate setting behavior by testing at 3 target
temperatures: 10°C (50°F), 24°C (75°F), 38°C (100°F)

« Extrude a construction scale bead (~50mm wide x
~20mm thick) for image data collection and cast C403
test specimen.

« Capture early penetration resistance data (~15-120
minutes) at 5-minute increments.

« Capture multispectral image data at bands of interest at
5-minute increments.

NIST - SBIR
.' . America’s Seed Fund

VISION SETTING BONDING FUTURE

Elapricd Tine, minuies
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Setting Results

ASTM C403 Setting Time Summary

Target Number | Initial Set Final Set Air Temp. Humidity to
Temp. of Tests Time |StdDev| Time StdDev| tolIST |StdDev IST StdDev
10 4 769 27 1213 74 8.7 0.8 58.7 17.2
24 4 414 20 603 18 25.2 0.2 36.3 12.2
38 4 285 6 421 13 38.9 1.0 16.0 33
Initial Set Time vs Ambient Temperature
900
800 * - .
[ =
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g 700 ¢ # Additional 3 Experiments
~ 600
©
? 500
3
£ 400 ‘
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Correlations to Penetration Resistance —vs Time
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Correlations to Penetration Resistance — vs Imagery

Y - 1238E+0092 11111111
R? = 9.420E-01

Highest R?:
Time: 71.5%

SWIR: 94.2.%
RGB: ~66%
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Setting and Bonding

* Cold joint formation is affected by progress towards
setting.

* More likely to occur in hot weather conditions.

* Found to occur prior to initial set time (as measured
by C403).

* Found to occur above a penetration resistance
threshold independent of ambient temperature.
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Interlayer Bonding in 3DCP

Layers
1 )

g “@®- =20 %é =20

4 1 \ ﬁ ﬁ
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Bonding Experiment Plan

160mMm | m—

Shear bond testing
in wall plane

VISION

test method/ bond strength bqnd stre'ngth
specimen treatment varied with time varied w/ time &
temp
Scheme 1 Scheme 2 Scheme 3
Wall Print Int. Temp Print Int. Temp Print Int. Temp

A ~20min  ~24C 10 min ~24C 10 min
B ~20min  ~24C 20 min ~24C 50 min

C ~20 min  ~24C 30 min ~24C 90 min x5 cycles or

_ D ~20min  ~24C 40 min ~24C 10 min ‘regimens’
' d;izf:nT:;ihﬁy E ~20min  ~24C | 50 min  ~24C | 50 min
mix/system F ~20min  ~24C 60 min ~24C 90 min
G ~20min  ~24C 70 min ~24C 10 min
l l H ~20min  ~24C 80 min ~24C 50 min

\ I ~20min  ~24C 90 min ~24C 90 min -

Flexural bond testing NH ..E.E" ..?.:.' Amerig‘sBSIeﬁ Fund
out of wall plane ey (—\
acl® CONCRETE
>
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Bonding Results — Regimen 1

Flexural Strength (MPa)
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Takeaways:

= The capping method employed appears to have
Scheme 1: Size and Treatment Comparison at 20min Print Interval erroneously boosted flexural strength.

= The 4-ptand 3-pt method appeared to yield similar
results (very little data to hang our hat on here).

. - . D
Dotted lines indicate flexural stress at The repeatability of all specimen varieties rivaled or

interlayer of interest when fracture exceeded the repeatability of the C348 test.
occurred elsewhere.
= High variation in layer widths along height of

specimen can create higher stress zones at
unintended interlayers (and makes it harder to
properly situate in the testjig).

C348 Reference  100mm gflpped 4-75mm Capped 4-pt50mm Capped 4-pt 50mm Tgtmmed 4- 50mm Tg{nmed 3 Trga?tnrgnlt\lg-pt (q—ci\‘
>~ CONCRETE
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Flexural Strength (MPa)

Bonding Results — Regimen 2
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Scheme 2: Constant Temperature, Varied Print Interval

@®50mm Capped 4-pt
@ 50mm Trimmed 3-pt
C348 Reference
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VISION SETTING

BONDING

110

120

130

FUTURE

Takeaways:

= Capping method results are higher than trimmed
method results. But also note 4-pt vs 3-pt.

= General buterratic reduction in flexural strength as
printintervalis increased.

= Relatively repeatable results with some exceptions.
Again rivaling or better than C348 results.

= Possible anomalous performance of ~60min
interval test wall.

= Variation in layer widths along height of specimen
negatively affect ability to properly place specimen
for load testing.

140
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Bonding Experiment Execution — Regimen 2 w/ imaging

- -‘-r:’—“;v. ._i_"-(

Ready to print at NIST AC Lab. Image data taken on interlayer of interest just after
printing and just before placement of next layer.
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| Future Work
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Imaging Correlation to Interlayer Bond Strengths

* ~1800 training data points after completion of
next 3 print experiment cycles

* Manual feature extraction and correlation
- machine learning approach
- supervised deep learning approach

* Move to more sophisticated procedure of
measuring setting progress, capturing force-
displacement curves of C807 Vicat needle
penetration rather than single force or time
values.

* Begin introduction of wind, humidity, and dust
effects on image parameters.
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Nozzle-mounted Field Prototype Pilots

‘Cool’ to be
printed over + Bead quality o .
- Bead history during 3, %
interlayer time e
» Setting progress
* Bond strength
‘Warm’
just printed
ARtx PCT Patent Pending i
(aci® <
> CONCRETE #
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Cost Horizon

204 |
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e T 2]
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VISION

SETTING

BONDING

* Primary driver of cost of system is the camera
technology.

* Colloidal quantum dot (CQD) camera
technology presents an opportunity to
dramatically reduce costs.

* Production volume component costis

expected to fall below $10,000 within two
years.

-
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Final Takeaways

1.

2.

3.

4.

5.

6.

Cameras can image reflected light in a spectrum ~7 times what the human eye can see, in
precise wavelength ranges designed to observe particular phenomena.

Machine vision and computer vision can employ learning models that incorporate physics-
based image parameters along with machine-generated parameters.

Standards for measuring setting time do not generate quality data for SDCP mortar mixes,
particular 2K mixes. New standards are needed.

Standards for measuring bond strength for printed 3DCP mixes are under development but
currently exist as modifications to ASTMs not originally intended for additive construction.

Research has demonstrated that computer vision can predict setting progress reasonably
well without knowledge of time or temperature history based on a currentimage and an
image immediately after bead extrusion. !

Research is currently underway to further tie these image correlations to interlayer bond
strength with the goal of creating a nozzle-mounted quality control system.

VISION SaniNe BONDING FUTURE ACLY CONCRETE sy
CONVENTION



Atx

Questions

Fundedby: INIST 7% SBIR
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