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This Presentation…
• Discusses the kinetics of the dehydroxylation of kaolinite and montmorillonite investigated under non-

isothermal conditions.

• Presents a framework for accurately estimating kinetic parameters and conversion-time ( 𝛼 − 𝑡 ) 

relationships using isoconversional methods.

• Explains the experimental validation of the estimated kinetic triplets used to predict isothermal 

calcination conditions.

• Highlights the relevance of the framework in generating novel SCMs from conventional and non-

conventional clay sources, including various potentially reactive aluminosilicate wastes that require 

thermal activation through optimized and energy-efficient calcination schemas.
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Background: Cement
▪ Concrete – most widely used construction material; second only 

to water in terms of global usage. 

▪ Production of Portland cement – key concrete component; 

accounts for ~8% of anthropogenic CO2 emissions, 7% of global 

energy use and 4% of global warming.

▪ Emission, energy and decarbonization strategies – reducing 

clinker content using SCMs is a promising and widely adopted 

lever, among others.

▪ Clays – from geologically abundant and cost-effective sources 

offer sustainable alternatives; also help offset the scarcity of 

industrial by-products like fly ash and slags used as SCMs.



THE WORLD’S GATHERING PLACE FOR ADVANCING 

CONCRETE

Clay minerals and their activation
▪ Clays – contains minerals like kaolinite, montmorillonite, illite etc.

▪ Clay minerals – fundamental crystal structure contains stacking layers of tetrahedral (T) and octahedral 

(O) sheets.

▪ Kaolinite and montmorillonite – notable for their pozzolanic properties when activated.
• Kaolinite – 1:1 ratio of T- and O- sheets; adjacent layers are joined together by hydrogen bonds; kaolin clay from US Silica

• Montmorillonite – 2:1 clay mineral from the smectite group; isomorphous substitution within the O-sheet; presence of 
interlayer exchangeable cations such as Ca2+, Na+ or K+; interlayer cations facilitate water adsorption; Sodium (Na) 
montmorillonite bentonite from American Colloid Company

Kaolinite

T- Sheet

O- Sheet

T- Sheet

Montmorillonit
e
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Clay minerals and their activation
▪ Both clay minerals contain OH groups chemically bonded in their lattices that must be removed to cause 

structural disorder and exposure of reactive sites.

▪ Dehydroxylation (thermal treatment) is the process of OH group removal to activate them as viable SCMs

▪ Many studies on clay calcination implement conditions involving longer durations at high temperatures 

than necessary.

▪ Over-calcination, due to exceedingly high temperatures or prolonged durations, not only cause energy 

wastage but also diminishes reactivity due to possible recrystallization of the clay structure.

▪ Dehydroxylation kinetics can be assessed from temperature programs revealing thermal behavior e.g., 

Thermogravimetric analysis (TGA), heat flow experiments like DSC, DTA, etc.
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Kinetic modeling: Isoconversional method
▪ Reaction-model fitting methods – capable of fitting hypothetical reaction models in the general rate 

equation; however, yields uncertain and sometimes uninterpretable kinetic results.

▪ Isoconversional (reaction model-free) kinetic analysis – solely temperature/time-dependent analysis of 

the general rate equation; assumption of reaction model not required; can determine the kinetic triplets 

that quantitatively characterizes a reaction.

▪ Kinetic triplets – Activation energy (𝐸), reaction model (𝑓 𝛼 ), and pre-exponential factor (𝐴)
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Kinetic modeling: Determination of 𝑬𝜶

▪ Differential isoconversional method

• The Friedman method – based on straightforward 

rearrangement and logarithmic transformation of the general 

kinetic rate equation. 𝐸𝛼  is determined from the slope of the 

linear plot. ln 𝐴𝛼  is obtained from the y-intercept

ln 𝛽𝑖

d𝛼

d𝑇
𝛼,𝑖

= ln 𝐴𝛼𝑓 𝛼 −
𝐸𝛼

𝑅𝑇𝛼,𝑖

▪ Rigid integral isoconversional methods – incorporate approximations of the kinetic temperature integral; 

examples are Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink methods.
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▪ Flexible integral isoconversional methods: 

• Vyazovkin incremental method – no approximations; 

based on numerical integration of the temperature 

integral over small time or temperature increment; 𝐸𝛼  is 

obtained by minimizing the objective function 𝜑 𝐸𝛼 .
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Kinetic modeling: Determination of 𝒇 𝜶

▪ Differential master plot approach, 𝑦(𝛼) – based entirely on the differential form of the general kinetic equation

▪ The master plot method – involves comparing experimental plots informed by the kinetic parameters of the process 

with reference theoretical curves representing different possible reaction mechanisms; the best match is then 

selected by graphical or regression analysis; functions are normalized at reference conversion point 𝛼 = 0.5

▪ Combined differential and integral master plot approach, 𝑍(𝛼) – based on the combination of the differential and 

integral forms of the general kinetic equation; simplifying the resulting expression predominantly reflects only the 

experimental data ( Τd𝛼 d𝑡 and  𝑇). 
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Kinetic modeling: Determination of 𝒇 𝜶
▪ Theoretical curves representing different possible reaction mechanisms
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Reaction order
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Second order F2 1 − 𝛼 2 1 − 𝛼 −1 − 1

Third order F3 1 − 𝛼 3 1

2
1 − 𝛼 −2 − 1

𝑛𝑡ℎ  order Fn 1 − 𝛼 𝑛 1

𝑛 − 1
1 − 𝛼 1−𝑛 − 1

Geometrical contraction

2D (contracting cylinder) R2 2 1 − 𝛼
1
2 1 − 1 − 𝛼

1
2

3D (contracting sphere) R3 3 1 − 𝛼
2
3 1 − 1 − 𝛼

1
3

Random nucleation and growth of nuclei
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Kinetic modeling: Determination of 𝑨
▪ The pre-exponential factor 𝐴 – obtained from the second derivative of the general rate equation after 

determining other components of the kinetic triplets; determined for each temperature program employed; 

there are other applicable methods to determine 𝐴

𝐴𝑖 =
−𝛽𝑖𝐸a

𝑅𝑇m
2 𝑓′ 𝛼m

exp
𝐸a
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Kinetic modeling: Estimation of conversion time
▪ Time predictions for calcination – The estimated kinetic triplets can be subsequently implemented to 

predict duration, 𝑡𝛼, required to reach a given conversion, 𝛼 in an isothermal temperature program at a 

fixed temperature

𝑡𝛼 =
𝑔 𝛼

𝐴
exp

𝐸a
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Kinetic framework
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Kinetic data: Heating rate experiment
▪ Linear non-isothermal TGA experiments – revealing thermal decomposition of kaolinite and 

montmorillonite at different heating rates, 𝛽; High purge gas flow rate to facilitate removal of water vapor 

during dehydroxylation; experiments follows the guidelines of ICTAC. 

Temperature 
programs, 𝛽 
(℃. min−1)

𝑇m (℃)

Kaolinite Montmorillonite

5 480 657
10 498 679
15 510 688
20 517 694
30 527 706
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Kinetic analysis: 𝑬𝐚 from isoconversional methods
The Friedman method – 𝐸𝛼 is determined from the slope of 

the linear plot.

Vyazovkin incremental method – 𝐸𝛼  is obtained by 

minimizing the objective function 𝜑 𝐸𝛼 .

Clay Mineral
Isoconversional 
range

Average 𝐸a (kJ. mol−1)
Friedman 
method

Advanced Vyazovkin 
method

Kaolinite 0.15 - 0.90 170 ± 8 170 ± 10
Montmorillonite 0.25 - 0.80 265 ± 20 270 ± 30
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Kaolinite: Reaction model and contextualization
▪ Dehydroxylation follows a reaction (𝑛th) order mechanism. 

Regression analysis of Kinetic compensation effect (KCE) 

yielded the reaction order exponent, 𝑛 as 2.3.

▪ From the crystal particle structure’s perspective, the 

mechanism implies that reaction rate is proportional to  the 

concentration of unreacted material, resembling a second 

order reaction.

▪ During dehydroxylation, OH units become mobile, displaced 

from their original position, react together forming water 

molecules which migrates out through the interlayer channels.

▪ The loss of OH groups induces structural distortion in the O-

sheets, changing the coordination of octahedral (Al) cation 

and transforming kaolinite to amorphous metakaolin.
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Na-montmorillonite: Reaction model and contextualization

▪ Dehydroxylation is diffusion-controlled. Master plot model- fitting 

confirms the rate-controlling step as three-way transport model 

(D3).

▪ Mechanism is linked to removal of water molecules and its transport 

towards phase boundary of the spherical crystalline aggregate.

▪ The Na+  interlayer cations influence diffusion rate of water 

molecules.

▪ Octahedral cations (Al ) undergo changes in coordination with 

residual oxygen anions, resulting in a distorted, five-fold 

coordinated, trigonal bipyramidal structure.

▪ The layered structure is preserved during dehydroxylation; 

amorphization may occur subsequently.
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Kinetic analysis: Pre-exponential factor (ln 𝐴)

▪ Average 𝐸a from Friedman and Vyazovkin methods are separately used to compute ln 𝐴. 

▪ Friedman and Vyazovkin methods yield identical ln 𝐴 values.

▪ The pre-exponential factor is independent of heating rate.

Temperature 
programs, 𝛽 
(℃. min−1)

ln 𝐴 (s−1)
Kaolinite Montmorillonite
Friedman 
method

Advanced Vyazovkin 
incremental method

Friedman method
Advanced Vyazovkin 
incremental method

5 9.06 9.15 11.52 11.81
10 9.08 9.17 11.46 11.74
15 9.06 9.15 11.48 11.76
20 9.08 9.16 11.51 11.79
30 9.10 9.19 11.50 11.78
Mean 9.08 9.16 11.50 11.78
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Kinetic predictions

▪ Erroneous kinetic triplet estimations can lead to flawed predictions of heat treatment requirements with energy and 

economic implications.

▪ The isothermal prediction plots (𝛼 − 𝑡) are based on the clays’ dehydroxylation ranges to optimize energy efficiency 

while avoiding over-calcination.

▪ Montmorillonite exhibits a rapid conversion to a peak value of 1.0, whereas kaolinite displays a more extended plateau 

near the maximum conversion.

Sample
Calcination condition

Target Conversion (%)
Temperature (℃) Time (min)

Kaolinite 

550 442

99.5
600 108
650 31
700 10

Montmorillonite
600 457

100650 73
700 14
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Experimental verification: TGA

▪ Bulk samples are calcined in a muffle furnace under the conditions based on kinetic predictions.

▪ The extent of dehydroxylation (conversion, 𝛼) of the calcined products was determined via mass loss (under TGA) 

within the dehydroxylation temperature range; degree of dehydroxylation ≥ 90%.

▪ The experimentally measured degrees of dehydroxylation were close to the target conversion values.

▪ Decomposition of impurities and temperature gradients in muffle furnace resulting in less-than-ideal heat transfer and 

consequently lower calcination efficiencies accounts for the residual mass loss during TGA validation.

Sample
Calcination condition Target 

Conversion (%)
Degree of 
Dehydroxylation (%)Temperature (℃) Time (min)

Kaolinite 

550 442

99.5

93.82
600 108 92.84
650 31 95.32
700 10 95.91

Montmorillonite
600 457

100
94.22

650 73 95.18
700 14 95.95
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Experimental verification: XRD

▪ Bulk samples are calcined in a muffle furnace under the 

conditions based on kinetic predictions.

▪ The mineralogical and qualitative amorphous characterization 

of the calcined products was evaluated by via XRD; XRD results 

corroborate the TGA experimental verifications

▪ Kaolinite XRD patterns reveal absence of peaks of the clay 

mineral but show broad amorphous hump between 14° and 35° 

2θ; peaks of accompanied impurities persist; the amorphous 

hump signifies enhanced reactivity.

▪ Montmorillonite’s layered structure is preserved in calcined 

sample, albeit show slight reductions or rounding off at higher 

calcination temperatures.
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Evaluation of reactivity

▪ Hydration kinetics, coupled with thermodynamic calculations using 

enthalpy of reaction of the samples with Ca(OH)2 was studied through 

micro-calorimetry to accurately determine reactivity over 7 days

▪ Both raw clay minerals exhibit low reactivity (<6%); raw montmorillonite 

was more reactive.

▪ The calcination protocol improved the reactivity of kaolinite samples to a 

similar degree of ~50% due to structural disorder and increased number of 

AlV coordination sites.

▪ Calcined montmorillonite exhibiting lower reactivity (<25%) retains its 

structural order after calcination; Amorphization induced at extended 

calcination accounts for the different extent of reactivity.
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Summary and conclusion

▪ Phase transformation of potentially reactive virgin materials through sound fundamental methodology and framework 

enables identification of energy-efficient activation pathways for novel SCM synthesis.
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Summary and conclusion

▪ Friedman differential and Vyazovkin incremental isoconversional methods were employed to accurately quantify 

kaolinite and montmorillonite dehydroxylation reaction yielding identical activation energy and pre-exponential factor 

for the respective clay mineral. Reaction models were identified using master plot approach based on 

isoconversional principle.

▪ The kinetic triplets representing the clay mineral dehydroxylation yielded reliable predictions across suitable 

temperature ranges for energy-efficient calcination to produce reactive and viable SCMs.

▪ TGA and XRD experiments confirmed complete or near complete dehydroxylation verifying the kinetic predictions.

▪ Reactivity of the synthesized SCM was a function of clay mineral structural disorder and the amorphousness induced 

during dehydroxylation.

▪ While the derived kinetic parameters and deductions are specific to the examined samples, they offer valuable 

insights that build on fundamental knowledge which can inform studies on related clay minerals.
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