

Impact of GNPs on the Buildability of Fiber Reinforced Concrete for Additive Manufacturing

Michail Margas, Rohitashva Singh, Panagiotis A. Danoglidis, Maria S. Konsta-Gdoutos

Department of Civil Engineering, Center for Advanced Construction Materials, The University of Texas at Arlington michail.margas@uta.edu

ACI Spring 2025 Open Topic Session, Part 2 of 2 Tuesday April 1, 2025, 4:00-6:00 pm, Dominion South, Toronto, ON, Canada

Buildability of Cement-Based Mixtures

- Rheological experiments: Oscillation-time \checkmark sweep tests were employed to analyze the evolution of storage modulus.
- early age which is an indication of material's stiffness.
- ✓ For additive manufacturing applications, high green strength and modulus are highly desired.

Concrete with insufficient buildability

*Y.Chen et al., Cement and Concrete Research 149 (2021) 106553

Polyethylene (PE) Fiber Reinforced Concrete for Additive Manufacturing **Advances and Challenges**

High Buildability

- ✓ High Storage Modulus
- ✓ High Green Strength and Modulus

High Buildability

N. Xu and Y. Qian, Cement and Concrete Composites 139 (2023) 105066

Nozzle --Fresh Cementitious Mixture

(c)

Layer failure

Polyethylene (PE) Fiber Reinforced Concrete for Additive Manufacturing Advances and Challenges

High Buildability

- ✓ High Storage Modulus
- ✓ High Green Strength and Modulus

High Buildability

N. Xu and Y. Qian, Cement and Concrete Composites 139 (2023) 105066

Low Buildability

Nozzle — Fresh Cementitious Mixture

Agglomerated PE fibers

Layer failure

Objective:

To Improve the dispersion of the PE fibers within the cementitious mixture and enhance the flowability, storage modulus and overall buildability

Optimize the mixing procedure

Shear Mixing time Optimum time

Shear Mixing Speed

Optimum speed

Materials and Mixing protocol

Effect of shear mixing time on the Storage modulus

w/c =0.30 @ 800rpm

Effect of shear mixing time on the Storage modulus

w/c =0.30 @ 800rpm

Effect of shear mixing speed on Storage Modulus

w/c=0.30 @ 60sec

- ✓ Shear mixing speed from 0 to 1800rpm
- ✓ Optimum shear mixing speed at 800rpm

Effect of shear mixing speed on Storage Modulus

w/c=0.30 @ 60sec

- ✓ Shear mixing speed from 0 to 1800rpm
- ✓ Optimum shear mixing speed at 800rpm

SEM images of PE fibers at different mixing times

w/c =0.30 @800rpm

CP reinforced with shear mixed PE fibers 60sec

CP reinforced with shear mixed PE fibers 120sec

Effect of Few-layer/Exfoliated GNPs on the Storage Modulus of PE-Cement paste

w/c=0.30 @ 800rpm, 60sec

Effect of Few-layer/Exfoliated GNPs on the Storage Modulus of PE-Cement paste

w/c=0.30 @ 800rpm, 60sec

Effect of PE +SP and Bulk GNPs on the Storage Modulus of PE-Cement paste

w/c=0.30 @ 800rpm, 60sec

Effect of PE +SP and Bulk GNPs on the Storage Modulus of PE-Cement paste

w/c=0.30 @ 800rpm, 60sec

197 nm

<u>0 nm</u>

100 nm

134nm

200.0 nm

37nm

(15-20 layers)

Green Strength and Modulus of Mortars reinforced with PE and PE+GNPs

Acknowledgements

The presenter would like to acknowledge the financial support of the National Science Foundation – Partnerships for International Research and Education (PIRE) Research Funding Program (NSF – PIRE – 2230747) and the U.S. Department of Transportation - University Transportation Centers Program "Tier 1 University Transportation Center for Durable and Resilient Transportation Infrastructure (DuRe-Transp)" (69A3552348339).

Thank you!

II

https://duretransp.uta.edu/

Center for Advanced Construction Materials

