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Motivation — Common Flat Slab Configuration CONVENTION

* Due to low lateral stiffness of flat plates shear walls typically included to
increase stiffness and carry lateral loads
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What is Punching Shear? @D concriTe P
CONVENTION

* Brittle failure mode of RC slabs caused by high transverse and in-plane stresses

near the column
 Failure occurs when inclined cracks form and extend into the compression zone

Code Provisions
Use the critical perimeter concept (location and
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Critical Perimeters Around Slab-Wall Connections convention
* Numerous critical perimeters recommended in the codes
* Critical perimeter not limited to toe region of the wall in North American codes

* ASCE-ACI 352 recommends Schwaighofer and Collins (1977) method when
column aspect ratio = 3

* V. |= 0.33\/E (MPa) on assumed critical perimeter
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Current Practice Around End of Walls

* Punching failures around wall toes observed in limited experiments
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» Extensive shear reinforcement may be specified around wall toes

Commercial structural )

analysis/design software cannot ",
account for punching around wall
toes (lack of design provisions even Wall Toe
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Advantages of Finite
Element Analysis

* Limited experimental database of slab-wall
connections

* NLFEA can be used to supplement
database

* Allows for cost-effective analysis of
parameters

* Can provide insight into structural
behaviour
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Careful calibration of model
parameters required!
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Summary of Calibrated FEM
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Model

Calibrated based on 7 tests (4 on
rectangular columns and 3 on square

columns)
Summary of Calibrated FEM
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CDP Model Parameters:

Eccentricity — 0.1, 03, /0., — 1.16, K. — 0.67

Dilation Angle — 45°

Uniaxial Compression Model:
Hognestad Parabola,

E, —5000,/f (MPa), f. — 44.6MPa

Uniaxial Tensile Model:
Bi-linear tensile stress-crack width (Petersson, 1981)
Gr — 93kN/m (Calculated from Model Code 1990)

Element Details:
Concrete — C3D8R (20mm), Rebar — T3D2 (20mm)
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FEM Calibration Results
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 Calibrated FEM found to accurately predict behaviour of slabs failing in shear

Load (kN)

Sagaseta, J., Tassinari, L., Fernandez Ruiz, M., & Muttoni, A. (2014). Punching of Flat Slabs
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Numerical Studies

. . CONVENTION
* Vstudy Concentric vertical load only

3 slab-wall connections. Large f =c,,,,/C
* differentx = ¢, /d.

> 38

min

* V+M study Concentric vertical load + uniaxial unbalanced moment

1 slab-wall connection with a xk = 1.287 is analyzed for two vertical load
levels (40% or 65% of the concentric capacity from the V study).

_ Wall dimensions (mm) Loading Conditions

K Thickness
Length (L) V Stud V+M Stud
(Cmin/d) (Crmin) y y
0.792 13660 160 -
Concentric Load 40% or 65% of Concentric Vertical
1.287 13760 260 Monotonically Capacity + Monotonically Increasing
Increased to Failure Moment

1.980 13900 400 _




Overview of Isolated Slab-Wall Specimens: V - Study acicone

* |[solated interior slab-wall connections analyzed
* Required estimation of radius of contraflexure, r, around wall (done with linear elastic FEA)
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* |solated specimens reduce computational demand
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Overview of Concentric Load + Unbalanced Moment: V+ M Study

* One SWC subjected to concentric vertical load and unbalanced moment analyzed k = 1.287

* Two different vertical load levels, IV, considered 40% and 65% of Concentric Load
Capacity + Increasing Moment M
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Results - Concentric Load Study - V Study

Force Versus Displacement for
k=0.792,1.287,1.980
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Crack Pattern on Tension Surface and Slab Side,

k=0.792

PE, Max. Principal
{Avg: 75%)
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Results - Concentric Load Study - V Study
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Shear Stress Distribution At Failure Along Wall Perimeter for
k=0.792,1.287,1.980
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Results — Concentric Load + Unbalanced Moment : V+M Study
Load-Deflection and Moment-Deflection Response for k=1.287
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Results — Concentric Load + Unbalanced Moment - V+M study

PE, Max. Principal
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Wall Perimeter Shear Stresses — Concentric Loading -V Study

* As support becomes increasingly elongated more load 1s transferred along long side

* Approximately 50% of total load transferred through wall toe (region within 5d of

wall end)
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Cut-Wall Study — Motivation
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* Current commercial software packages cannot account for punching shear

around wall toes

* Designers need a simple model/method to estimate punching capacity

* Use of a cut-wall model could potentially facilitate use of currently available
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Column 2
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Lwall
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Adopted Cut-Wall Model D oS

CONVENTION

» The toes length of 5d and the gap of 2d best represent the full slab-wall connection.
» The opening to ensure that entire portion of the critical perimeter was removed.
» Proposed design methods neglect stresses in gap region

» Shows that a slab-wall connection can be designed by decomposing into
» two-way shear and one-way shear regions.

Toe 1 Remaining Wall (1-way Shear) Toe 2

(2-way lab Openin (2-way

Shear) /S peming b Shear)
HRE

d

.II".IIGE[] REQi‘DH 0.5d=100mm E -
|5d=1000] 2d=400 | _ L1-way=cmax-2(2d)-2(5d) _oHd | TAd |
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Two-Way Shear Region (Toe) Capacity — Proposed Methods

@CONCRETE’
« Two methods proposed to estimate the punching shear capacity of the toe regiofy=" "~

* Method 1W - Effective Critical Perimeter
* Effective perimeter concentrated at toe end corresponding to wall end

* Method 2W — Linear Stress Distribution (nonuniform stress distribution)
* Same distribution as assumed for the design of rectangular columns

* Maximum stress of 0.33\/E in both methods (to match ACI 318)

Vs determined using linear
interpolation when c,,;,<6.5d

0.5d

 — 3.75d
s \
—-——J
2.25d E (0.1)0.33(f'c)'2

x=min{Cy/2, 1.125d}
Method 1W (Effective Critical Perimeter)

0.33(f'c)"?
Method 2W (Linear Stress Distribution)
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One-Way Shear Capacity — Proposed Method
* Uniform distribution used to predict capacity of one-way shear region

* Design equations are presented in terms of shear force, V
* Due to fact that SWC is decomposed into multiple regions

\— Stress here One-way Wall CL :[

neglected Shear Region
* Vl—way — vc,l—way(ZLl,way)d

* L; way: length of one-way shear region (¢, — 2(2d) — 2(5d))
* Vei1-way:
¢ 0.1(0.33),/f. — Kk = 0.594

* 0.15(0.33)./f, > k= 2.970
* Linearly interpolate between these values

(ACi® CONCRETE »s
CONVENTION
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Design Methods Summary Do S
CONVENTION #”

* Design method applies to supports where ¢,,,,, = 14d (this limit is based on cut-
wall model results)

 SWC decomposed into toe region (2-way shear) and remaining wall (one-way
shear)

* Nonuniform distribution used to predict capacity of toe region
ve=0.33(f'c)" _ 172
Vv = 0.1(0.33)(f'c)"'“ for k < 0.594

. Tm"c=(0-1 )0.33(fc)"® " - 0 15(0.33)(fc)'" for k 22.970
Gap 2d linearly interpolate for intermediate k values
[T T O T T T T L T T e T T T T O O T T T

E/////)/W/////////////////////////////

e N - ‘

|-
3.75d 1.75d

Two-way Stress here One-way Wall CL —
Shear Region neglected Shear Region

~ Ves

Summary of Proposed Design Method for SWCs — 2 Wall Shown 21



Predicted Capacities of Toe Two-Way Shear Regions

N Predicted Toe Load Capacity (kN) Vo Ve
FEA (Full
ik ACI318 Method1W  Method2W  ACI318  Method 1W Method 2W
0.792 [EPLY 1213 1312 1093 0.85 0.92 0.77
1.287 EPAL 1278 1401 1160 0.90 0.99 0.82
LN 1641 1370 1525 1245 0.83 0.93 0.76

- Avg. 0.86 0.95 0.78

ACIl capacity based on aspect ratio of full slab-wall connections.

ACIl capacity based on toe aspect ratio is overpredicted by 30%.
The cut-wall method cannot be directly used in commercial slab analysis programs,
which would take the toe dimensions to calculate the predictions.



Predicted One-Way Shear Region Capacities

_ Predicted One-Way Region Capacity (kN)
— FEA ACI Proposed ACI Proposed
B 0 s 005 43 08
_ 1349 5588 1115 4.1 0.8
R o o 275 34 oz
R v 39 o



Predicted Punching Capacities for Interior Slab-wall Connections

I- MO LB GIOLEE Predicted Punching Shear Capacity (kN)

e Thickness, Length, AspectRatio, Veeas FUll  Vig,, Cut -
Cmin (mm) Cax (mm) ,8 VACI proposed
Cmin/d Wall Wall
0.792 160 13660 85.4 2700 2676 6677 2097
1.287 260 13760 52.9 2764 9765 6866 2275
1.782 360 13860 38.5 3149 3157 7056 2450




Conclusions - Finite Element Studies

ACI 318-19 result in unconservative estimates of punching capacity of slab wall
connections, compared to the FEA.

* The assumption of a uniform shear stress along the entire critical perimeter is incorrect.

* The shear stresses concentrate along the short side of the wall and near the wall corner
along the long side.

* Punching shear failures of slab-wall connections can occur before one-way shear
failures, but the predicted capacities are much higher than those expected in a typical
structure.

* Punching shear failures are unlikely in the absence of extremely large,
concentrated loads or significant slab openings in the vicinity of the wall toe.



Conclusions — Design Methods
* 40-50% of the total gravity load is transferred through the toe regions.

* a two-way shear region near the wall toes and a one-way shear region,
considered separately
* Two possible methods for two-way shear regions:

 Method 1W - effective critical perimeter and a constant nominal shear
stress

 Method 2W - nonuniform shear stress n along the critical perimeter.

* The one way shear region- a constant shear stress, which is dependent on k
(chmin/d)'

* The proposed design methodology provides reasonable and conservative
capacities of the slab-wall connections.
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