FINITE ELEMENT ANALYSIS AND DESIGN OF

SHEAR BEHAVIOUR OF RC SLABS SUPPORTED ON WALLS

Graeme J. Milligan

UNIVERSITY OF

Maria Anna Polak

Cory Zurell

Department of Civil and Environmental Engineering University of Waterloo

CONCRETE CONVENTION

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Motivation – Common Flat Slab Configuration

• Due to low lateral stiffness of flat plates shear walls typically included to increase stiffness and carry lateral loads

What is Punching Shear?

- Brittle failure mode of RC slabs caused by high transverse and in-plane stresses near the column
- Failure occurs when inclined cracks form and extend into the compression zone

Code Provisions

Use the critical perimeter concept (location and capacity vary)

Inclined Cracks After Punching Failure (MacGregor and Bartlett, 2000)

ACI 318-19 and Eurocode 2 (2004)

Critical Perimeters Around Slab-Wall Connections

- Numerous critical perimeters recommended in the codes
- Critical perimeter not limited to toe region of the wall in North American codes
- ASCE-ACI 352 recommends Schwaighofer and Collins (1977) method when column aspect ratio ≥ 3
 - $v_c = 0.33\sqrt{f_c'}$ (*MPa*) on assumed critical perimeter

Current Practice Around End of Walls

- Punching failures around wall toes observed in limited experiments
- Extensive shear reinforcement may be specified around wall toes

 Commercial structural analysis/design software cannot account for punching around wall toes (lack of design provisions even though slab-wall connections are essential)

Advantages of Finite Element Analysis

- Limited experimental database of slab-wall connections
- NLFEA can be used to supplement database
 - Allows for cost-effective analysis of parameters
 - Can provide insight into structural behaviour

Careful calibration of model parameters required!

Summary of Calibrated FEM

 ε_1

Tensile Strain

FEM Calibration Results

• Calibrated FEM found to accurately predict behaviour of slabs failing in shear

Numerical Studies

- V study Concentric vertical load only
 - 3 slab-wall connections . Large $\beta = c_{max}/c_{min} > 38$
 - different $\kappa = c_{min}/d$.
- V+M study Concentric vertical load + uniaxial unbalanced moment
 - **1 slab-wall connection** with a $\kappa = 1.287$ is analyzed for two vertical load levels (**40% or 65%** of the concentric capacity from the V study).

	Wall dimensions (mm)		Loading Conditions			
κ (c_{min}/d)	Length (<i>L</i>)	Thickness (c _{min})	V Study	V+M Study		
0.792	13660	160		-		
1.287	13760	260	Concentric Load Monotonically Increased to Failure	40% or 65% of Concentric Vertical Capacity + Monotonically Increasing Moment		
1.980	13900	400		_		

Overview of Isolated Slab-Wall Specimens: V - Study

- Isolated interior slab-wall connections analyzed
 - Required estimation of radius of contraflexure, *r*, around wall (done with linear elastic FEA)
- Isolated specimens reduce computational demand

Hypothetical Structure (1/4 Modelled in FEA to Determine Isolated Specimen Dimensions)

Overview of Concentric Load + Unbalanced Moment: V+ M Study

- One SWC subjected to concentric vertical load and unbalanced moment analyzed $\kappa = 1.287$
- Two different vertical load levels, V, considered 40% and 65% of Concentric Load Capacity + Increasing Moment M

 \mathbf{D} and $\mathbf{1}$ and \mathbf{C} and $\mathbf{1}$ and \mathbf{V} is $\mathbf{V} + \mathbf{M} \mathbf{C}$ and $\mathbf{1}$

CONCRETE

CONVEN

Results - Concentric Load Study - V Study

Force Versus Displacement for κ =0.792, 1.287, 1.980

Crack Pattern on Tension Surface and Slab Side, κ =0.792

Results - Concentric Load Study - V Study

Shear Stress Distribution At Failure Along Wall Perimeter for κ =0.792, 1.287, 1.980

short side of the wall

long side of the wall

Results – Concentric Load + Unbalanced Moment : V+M Study Load-Deflection and Moment-Deflection Response for κ =1.287

 $40\% V_{conc}$ +M

Results – Concentric Load + Unbalanced Moment - V+M study

- Crack pattern and shear distribution similar to vertical load only
- Punching failures occur at similar stress magnitude regardless of loading

Top: Crack pattern at wall toe where stresses due to V+M are additive

Bottom: Shear Stress Distribution Along Wall Perimeter (same toe)

Wall Perimeter Shear Stresses – Concentric Loading - V Study

- As support becomes increasingly elongated more load is transferred along long side
- Approximately 50% of total load transferred through wall toe (region within 5*d* of wall end)

Cut-Wall Study – Motivation

- CONCRETE CONVENTION
- Current commercial software packages cannot account for punching shear around wall toes
- Designers need a simple model/method to estimate punching capacity
- Use of a cut-wall model could potentially facilitate use of currently available software

Adopted Cut-Wall Model

- > The toes length of *5d* and the gap of *2d* best represent the full slab-wall connection.
- > The opening to ensure that entire portion of the critical perimeter was removed.
- Proposed design methods neglect stresses in gap region
- Shows that a slab-wall connection can be designed by decomposing into
 two-way shear and one-way shear regions.

Two-Way Shear Region (Toe) Capacity – Proposed Methods

- egions
- Two methods proposed to estimate the punching shear capacity of the toe regions
- <u>Method 1W</u> \rightarrow Effective Critical Perimeter
 - Effective perimeter concentrated at toe end corresponding to wall end
- <u>Method 2W</u> → Linear Stress Distribution (nonuniform stress distribution)
 - Same distribution as assumed for the design of rectangular columns
- Maximum stress of $0.33\sqrt{f_c'}$ in both methods (to match ACI 318)

One-Way Shear Capacity – Proposed Method

- Uniform distribution used to predict capacity of one-way shear region
- Design equations are presented in terms of shear force, V
 - Due to fact that SWC is decomposed into multiple regions

• $V_{1-way} = v_{c,1-way} (2L_{1,way}) d$

- $L_{1,way}$: length of one-way shear region $(c_{max} 2(2d) 2(5d))$
- *v_{c,1-way}*:
 - $0.1(0.33)\sqrt{f'_c} \to \kappa = 0.594$
 - $0.15(0.33)\sqrt{f'_c} \rightarrow \kappa = 2.970$
 - Linearly interpolate between these values

Design Methods Summary

- Design method applies to supports where $c_{max} \ge 14d$ (this limit is based on cut-wall model results)
- SWC decomposed into toe region (2-way shear) and remaining wall (one-way shear)
- Nonuniform distribution used to predict capacity of toe region

Summary of Proposed Design Method for SWCs $-\frac{1}{2}$ Wall Shown

Predicted Capacities of Toe Two-Way Shear Regions

	Pr	edicted Toe	Load Capacity	y (kN)		V_{calc}/V_{FEA}	
К	FEA (Full Wall)	ACI 318	Method 1W	Method 2W	ACI 318	Method 1W	Method 2W
0.792	1421	1213	1312	1093	0.85	0.92	0.77
1.287	1415	1278	1401	1160	0.90	0.99	0.82
1.980	1641	1370	1525	1245	0.83	0.93	0.76
				Avg.	0.86	0.95	0.78
	•••						

ACI capacity based on aspect ratio of full slab-wall connections.

ACI capacity based on toe aspect ratio is overpredicted by 30%.

The cut-wall method cannot be directly used in commercial slab analysis programs, which would take the toe dimensions to calculate the predictions.

Predicted One-Way Shear Region Capacities

	Predicted Or	V_{calc}/V_{FEA}			
κ	FEA	ACI	Proposed	ACI	Proposed
0.792	1279	5464	1005	4.3	0.8
1.287	1349	5588	1115	4.1	0.8
1.980	1675	5763	1273 3.4		0.8
			Avg.	3.9	0.8

Predicted Punching Capacities for Interior Slab-wall Connections

	Wall Paramo	eters		Predicted Punching Shear Capacity (kN)			
к, c _{min} /d	Thickness, c _{min} (mm)	Length, c _{max} (mm)	Aspect Ratio, eta	V _{FEA} , Full Wall	V _{FEA} , Cut Wall	V _{ACI}	V proposed
0.792	160	13660	85.4	2700	2676	6677	2097
1.287	260	13760	52.9	2764	2765	6866	2275
1.782	360	13860	38.5	3149	3157	7056	2450

Conclusions – Finite Element Studies

- ACI 318-19 result in unconservative estimates of punching capacity of slab wall connections, compared to the FEA.
- The assumption of a uniform shear stress along the entire critical perimeter is incorrect.
- The shear stresses concentrate along the short side of the wall and near the wall corner along the long side.
- Punching shear failures of slab-wall connections can occur before one-way shear failures, but the predicted capacities are much higher than those expected in a typical structure.
 - Punching shear failures are unlikely in the absence of extremely large, concentrated loads or significant slab openings in the vicinity of the wall toe.

Conclusions – Design Methods

- 40-50% of the total gravity load is transferred through the toe regions.
- a two-way shear region near the wall toes and a one-way shear region, considered separately
- Two possible methods for two-way shear regions:
 - Method 1W effective critical perimeter and a constant nominal shear stress
 - Method 2W nonuniform shear stress n along the critical perimeter.
- The one way shear region- a constant shear stress, which is dependent on κ ($\kappa {=} c_{\min}/d).$
- The proposed design methodology provides reasonable and conservative capacities of the slab-wall connections.

Acknowledgements

Blackwell

27

