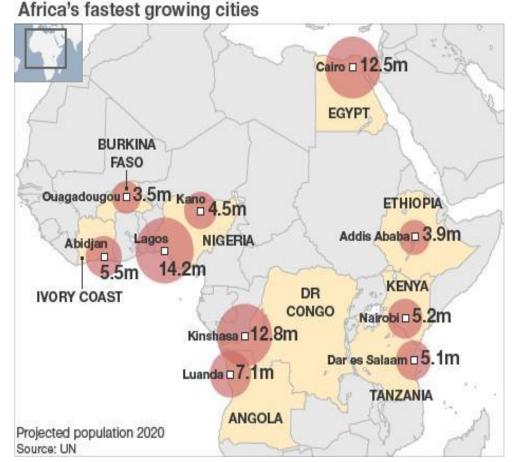
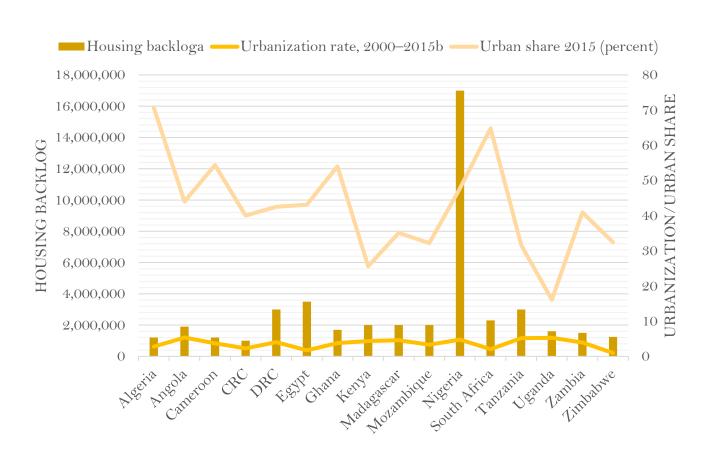


Africa's development of low-carbon concrete code policy

Joseph Mwiti Marangu, Ph.D


Director, Institute of Cement and Concrete

Meru University of Science & Technology - Kenya


Physical infrastructure in Sub-Sahara Africa (SSA)

- By 2050, Africa's urban population is expected to reach 1.23 billion
- By 2030 the continent will no longer be predominately rural <u>UN-Habitat's</u> <u>State of African Cities 2010 report</u>
- The number of people living in African cities will triple over the next 40 years and by 2050; 60% of Africans will be city dwellers
- Six of the world's fastest growing economies are in Africa

Housing backlog in SSA; Selected countries with over 1million housing backlog

- Total housing backlog in Africa is up to 50,562,000 with more than ¾ from SSA
- About 199.5 million people in SSA live in slums, the highest number in the world.

(UN-Habitat's State of African Cities 2010 report)

What is the dream? Earth, timber or concrete debate

Source: tschuma417 / stock.com

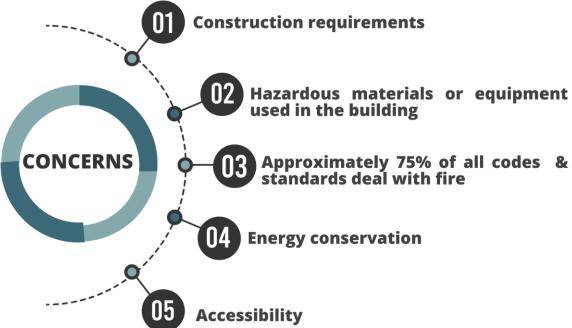
Mix of earth and thatch
- Cost and frequency of repairs

Timber

-Deforestation & biodiversity loss

Cement & concrete

- Durable, decent etc

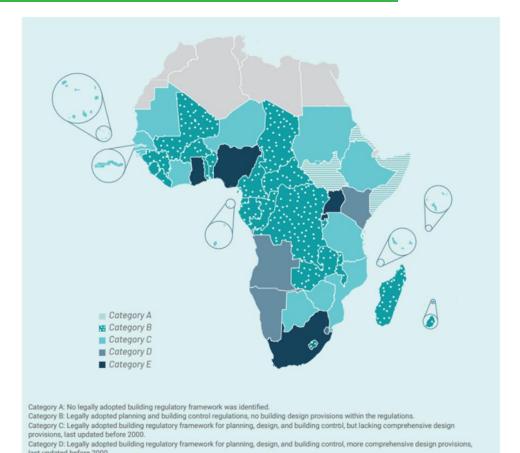

Who does the construction?

Towards building codes

Ensure public health and safety throughout a building, majority have come into play "after-the-fact" as a lessons learnt especially from a major tragedy.

Current status on building codes

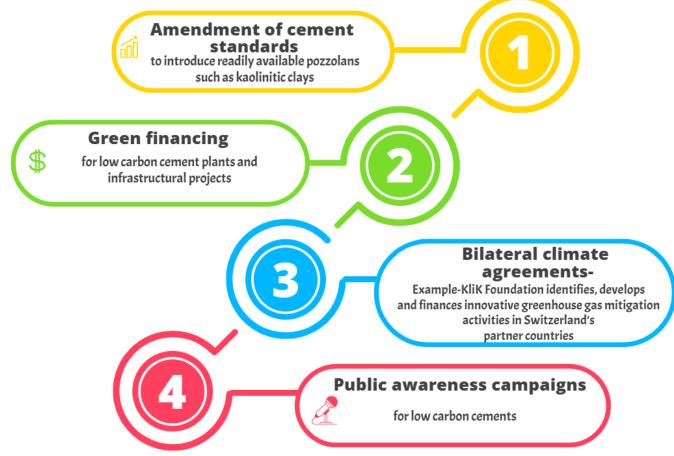
Most SSA Africa countries are revising their building codes (World Bank Report 2022)



Heavily rely on global north codes which;

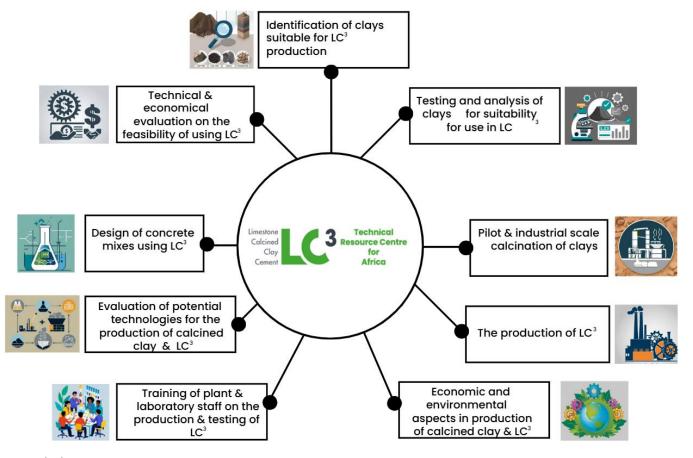
- -Do not reflect their geographic climatic conditions -Planning and design of the buildings etc.

Ongoing adoption e.g. of Euro codes with national annexes



Category E: All components of a legally adopted building regulatory framework in place with more comprehensive design provisions, updated

Source: Original map developed for this publication, based on World Bank data (2022)



Steps to low carbon cement

What we do at LC³-TRC Africa

Amendment of cement standards

• Example 1: EN 197 part 5: 2021

Table 1 — Portland-composite cement CEM II/C-M and Composite cement CEM VI

Main types														
	Notation prod (types of	ucts	Clinker	Blast-furnace slag	Silica fume	natural	Pozzolana natural calcined		Fly ash calcareous		Limes	tone	Minor additional constituents	
	Type name	Type notation	к	s	D p	P	Q	v	w	Т	L c	LL C		
CEM II	Portland- composite cement ^d	CEM II/ C-M	50-64	<										
CEM VI		CEM VI (S-P)	35-49	31-59	_	6-20	-	-	_	-	-	-	0-5	
	Composite cement	CEM VI (S-V)	35-49	31-59	_	_	_	6-20	_	_	-	_	0-5	
		CEM VI (S-L)	35-49	31-59	-	-	-	-	-	-	6-20	-	0-5	
		CEM VI (S-LL)	35-49	31-59	-	-	-	-	-	-	-	6-20	0-5	

The values in the table refer to the sum of the main and minor additional constituents.

 $^{^{}m b}$ In case of the use of silica fume, the proportion of silica fume is limited to 6-10 % by mass.

In case of the use of limestone, the proportion of limestone (sum of L, LL) is limited to 6-20~% by mass.

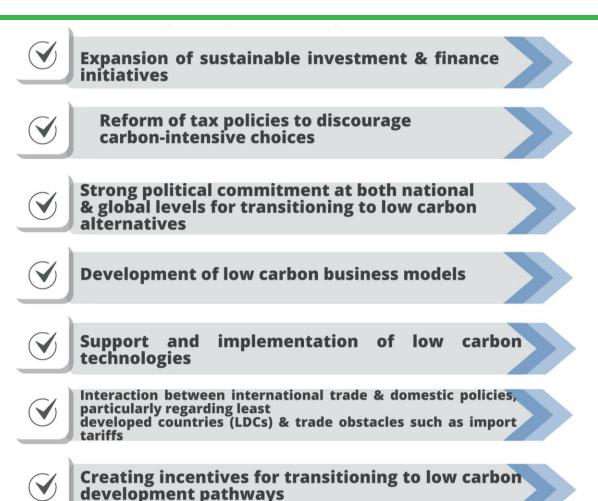
d The number of main constituents other than clinker is limited to two and these main constituents shall be declared by designation of the cement (for examples, see Clause 6).

Amendment of cement standards

• Ghanaian LC3 standard: GS PAS 5: 2024

<u>Table 1 - Limestone Calcined Clay Cement (LC3) and Composite Limestone</u>
<u>Calcined Clay Cement (LC3-M)</u>

		Composition (percentage by mass ^a)													
Notation of the prod (types of cement)	Main constituents .														
	Clinker	Blast- furnace slag	Silica fume	Pozzol	ana	Fly ash									
					natural calcined	siliceous									
Type name	Type notation	K	s	D	Р	Q	v	w	т	L	LL				
Limestone Calcined Clay Cement	LC3	35-64	-	-	11	18-35		-	-	18-30		0-5			
Composite Limestone Calcined Clay Cement	LC3 - M	35-64	. *	6-10		12-25	6-10			18-30		0-5			
	Type name Limestone Calcined Clay Cement Composite Limestone Calcined	Type name Type notation Limestone Calcined LC3 Clay Cement Composite LC3 - M Limestone Calcined	Notation of the products (types of cement) Clinker Type name Type notation K Limestone Calcined LC3 Clay Cement Composite Limestone Calcined LC3 - M 35-64	Notation of the products (types of cement) Blast-furnace slag	Notation of the products (types of cement) Clinker Blast-furnace slag Silica fume	Notation of the products (types of cement) Clinker Blast-furnace slag Clinker Silica fume natural Type name Type notation K S D P Limestone Calcined LC3 Clay Cement Composite Limestone Calcined Calcined Composite Calcined	Notation of the products (types of cement) Blast-furnace slag Silica fume Pozzolana	Notation of the products (types of cement) Blast-furnace slag	Notation of the products (types of cement) Blast-furnace slag	Notation of the products (types of cement) Blast-furnace slag	Notation of the products (types of cement) Biast-furnace slag	Notation of the products (types of cement) Blast-furnace slag			


Amendment of cement standards

• Example 4: KS EAS 18 part 1: 2025 (Balloting stage in 8 EAC member states)

	•			•		`		\mathcal{C}											
L	Cement																		-
1	Portland– slag cement	CEM II/A-S	80–94	6 - 20	_	_	_	_	ш										-
1		CEM II/B-S	65–79	21 - 35	-	_	_	_											
	Portland- silica fume cement	CEM I/A-D	90 – 94	-	6 - 10	-	_	-			1		1	1	L A	A	1	8	
1	Portland– Pozzolana cement	CEM II/A-P	80 – 94	_	_	6 - 20	_	_				A							
1		CEM II/B-P	65- 79	-	_	21 - 35	_	_				0					A		
1		CEM II/A-Q	80 - 94	-	_		6 - 20	_	7		3	1	A	La					
1		CEM II / B-Q	65 – 79	-	_	_	21 -35	_				Y	at l		TA 1				
1	Portland – fly ash cement	CEM II / A-V	80–94	-	_	-	_	6 - 20	1//			1	EZ N		160			166	
		CEMII / B-V	65 – 79	-	_	-	_	21 - 35			7						1/2	7-12	
CEM II		CEM II/A-W	80–94	-	_	-	_	-	2		2				MIL			100	
1		CEMII/B-W	65 – 79	-	_	_	_	_	2	10	1 7				1 7			SI (
	Portland– burnt shale cement	CEM II/A-T	80–94	-	_	-	_	-	S							1			
		CEM II/ B-T	65 – 79	_	_	_	_	_				NE							
	Portland- limestone cement	CEM II/ A-L	80 - 94	-	_	-	-	-			1		0	- 16 16			3		
		CEM II/A-L	65- 79	-	_	-	-	_	2/2								49		
		CEM II/A-LL	80 - 94	-	_	-	-	_										3	
		CEM II/ B-LL	65 - 79	-	_	-	-	_	800				35	0- 5					
	Portland composite cement ^{c)}	CEM II/ A-M	80–88	<			12	- 20					->	0 - 5	5				
		CEM II/ B-M	65 -79	≪			21	- 35					->	0- 5					
		CEM II/ C-M	50-64	≪															
		CEM II/ D-M ^d	35-49	≪	<> 51 - 65>									0-5					

Conclusion: Policy alignment for better carbon reduction

Thank You!