

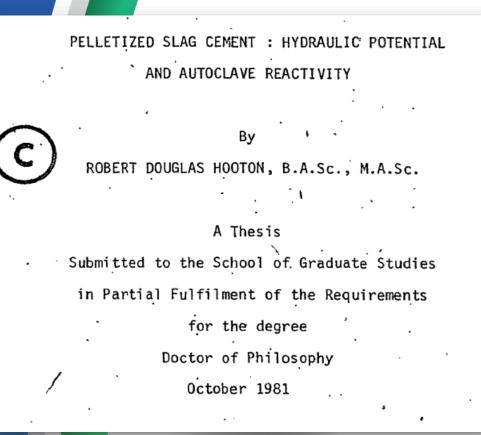
R. Doug Hooton: A Legacy of Support for Use of Slag cement

Jan Prusinski, PE, FACI

Vice President of Marketing, Skyway Cement Company

President, Slag Cement Association

jprusinski@skywaycement.com


832-265-7130

R. Doug Hooton

- PhD from University of Toronto 1981
- Research Engineer at Ontario Hydro 1981-1986
- Professor University of Toronto 1986 2021
- Professor University of Toronto 2021 Now
- Principal Concrete Durability Associates – 2019 - Now

PhD Thesis

- Development of a test method to quantify the degree of vitrification achieved in BF slag; and evaluation of test methods for potential use in commercial quality control.
- The study of the incorporation of slag cement in autoclaved binders having a wide range of compositions in the ternary system containing slag, portland cement and grbund quartz (silica flour)
- The effects of variations in the physical, and chemi cal properties of slag cement on autoclave reactivity.

Scope of Research

- Concrete durability and service life
- Physical, chemical and mineralogical properties of portland cements, SCMs, admixtures
- Structures and Bridges
- Waste Materials Utilization
- Alkali aggregate reactions
- Sulfate resistance
- De-icer salt scaling resistance
- Properties of ancient concrete materials
- Performance standards and specifications for concrete

Honors

- Bryant Mather Award, ASTM, 2022
- Honorary Member, RILEM, 2022
- Honorary Member, ACI, 2018
- Research Chair in Concrete Durability and Sustainability, Natural Sciences and Engineering Research Council of Canada; Cement Association of Canada , 2010

Doug's Work with Slag Cement

- 42 out of 226 items in his Scholarly and Creative Works
- First cited work: "Glass Content Determination and Strength Development Predictions for Vitrified Blast Furnace Slag"
 - R. Doug Hooton and John J. Emery
 - ACI SP-79 (1983): Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete
 - Established that XRD was the most reliable method to determine degree of vitrification
 - Established that the strength of slag/portland mortars was related to:
 - Chemical composition
 - Fineness
 - Degree of vitrification

Doug and ACI 233 – Slag Cement in Concrete

- Current chair of ACI 233 Slag Cement in Concrete
- Longstanding member of committee
- 16 References with Doug as lead or co-author

Guide to the Use of Slag Cement in Concrete and Mortar

Reported by ACI Committee 233

33R-17

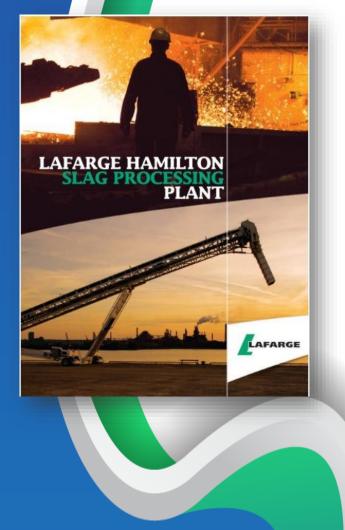
 \land


 $\overline{()}$

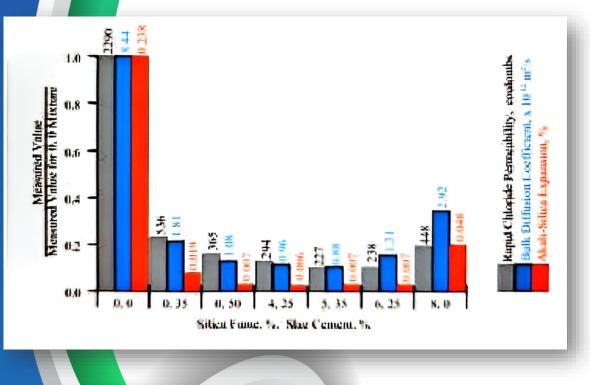
Slag Characteristics

- "Pelletized Slag Cement: Autoclave Reactivity,"
 - Hooton, R. D., and Emery, J. J. (1980)
 - 7th International Congress on the Chemistry of Cement
 - Confirmed that because of the complexity of the reacting system the best way to evaluate slag cement performance is through direct testing of workability, strength characteristics, and durability

Sulfate Resistance


- "Sulfate Resistance of a Canadian Slag Cement"
 - Hooton, R. D., and Emery, J. J. (1990)
 - ACI Materials Journal
 - Over 1000 cylinders were cast from eight concrete mixes made with normal, moderate, and sulfate-resisting cements, and 45, 65, and 72 percent slag replacement.
 - Concluded that 50% slag replacement for portland provided better performance than high sulfate-resistance cement alone (regardless of C_3A content of the cement used with the slag)

Ternary Mixtures in High-Strength Structural Concrete


- "Some characteristics of high-strength structural concrete" (1991, 1994)
 - J. A. Bickley, J. Ryell, C. Rogers, and R. D. Hooton
 - Canadian Journal of Civil Engineering
 - 68-storey Scotia Plaza
 - Ternary mixture with 28% slag cement, 7.5% silica fume and portland cement
 - Demonstrated high-strength, high durability for highrise structural applications – 7 years of tests
 - Testing to demonstrate no strength regression in silica fume concrete mixtures

Canadian Use of Slag Cement in Concrete

- "Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete" (2000)
 - Hooton, R.D.
 - Paper documenting use of slag cement—since Lafarge/Hamilton slag cement grinding facility established in 1976
 - Cited benefits in workability, strength enhancement, ASR improvement, sulfate resistance, and heat reduction; as well as whiteness for architectural applications.
 - Noted that slag has become the predominant SCM in Ontario

Durability of Ternary Concrete with Slag and Silica Fume

- "Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag: Laboratory and Outdoor Exposure Site Studies" (2002)
 - Bleszynski, R.; Hooton, R. D.; Thomas, M. D. A.; and Rogers, C. A.
 - ACI Materials Journal
 - Showed how ternary mixtures with slag cement and silica fume significantly improved RCP and ASR resistance
 - Large-scale cast-in-place slabs, and simultaneous lab speciments
 - Salt scaling study, also.

Delayed Ettringite Formation

- "The Effect of Pozzolans and Slag on the Expansion of Mortars Cured at Elevated Temperature - Part II, Microstructural and Microchemical Investigations,"
 - Ramlochan, T.; Thomas, M. D. A.; and Hooton, R. D. (2004)
 - Concluded that a sufficient amount of slag cement (or metakolin, or appropriate fly ash) could prevent ettringite formation (DEF) in heatcured mortars.

Use in Mine Tailing Stabilization

- "Microstructural and Chemical Investigations of
- Cemented Paste Backfills,"
 - Ramlochan, T.; Grabinsky, M. W.; and Hooton, R. D. (2004)
 - Documented the use of slag cement in a 90% slag/10% portland mixture for mine tailings at the Kidd Mine in Northern Ontario

Deicer Salt Scaling Resistance

- "Long-Term Scaling Performance of Concretes Containing Supplementary Cementing Materials" (2007)
 - Boyd, A. J., and Hooton, R. D.
 - Reported 12 years of field performance (from 1994) on 6 slag and fly ash SCM mixtures
 - 25-50% slag, 15% C Fly Ash, and 25/10% slag ash ternary mixture
 - Cured and tested specimens with ASTM C672 resulted in far more severe scaling than lab specimens allowed to cure for 4 months (which correlated with field slabs).

Deicer Salt Scaling Resistance (con't)

- "Deicing Salt Scaling Resistance of Concrete Incorporating Supplementary Cementing Materials: Laboratory and Field Test Data" (2008)
 - Bouzoubaa, N., Bilodeau, A., Fournier, B., Hooton, R. D., Gagne ´, R.; and Jolin, M.
 - 7 mixtures with SCMs: Compared ASTM C672 with BNQ Test (Province of Quebec Salt Scaling Standard)
 - Showed severity of ASTM C672 for SCM mixtures, and adequacey of BNQ test, comparing 4 years of field and lab results

Drying Shrinkage

- "The Effect of Ground Granulated Blast Furnace Slag on the Drying Shrinkage of Concrete—A Critical Review of the Literature"
 - Hooton, R. D.; Stanish, K.; Angel, J. P.; and Prusinski, J.(2009)
 - ACI Special Publication
 - Established that the only parameter of a slag mixture design that had a significant influence on the drying shrinkage was the total aggregate volume.
 - The level of slag replacement and the w/cm of the concrete mixture were not found to affect the relative drying shrinkage
 - Also, whether slag added at a ready-mix facility, or as a blended cement did not influence results.

• "20-Year Field Evaluation of Alkali-Silica Reaction Mitigation,"

- Hooton, R. D.; Rogers, C. A.; MacDonald, C. A.; and Ramlochan, T., (2013)
- ACI Materials Journal

ASR Mitigation

- Reported 20-year performance of ASR field exposure samples placed in Kingston, ON in 1991.
- Established the efficacy of various levels of slag and other SCMs in mitigating ASR.
- Three concretes showed no evidence of cracking: Two with 50% slag replacement, and a ternary mixture with 25% slag and 3.8% slilica fume.
- Low-alkali cement mixtures cracked after 12 years

Doug and the SCA

- Instrumental in educating numerous concrete industry decisionmakers in slag cement through SCA seminars
- SCA/Industry research:
 - Deicer salt scaling
 - Deicer Scaling Resistance of Concrete Pavements, Bridge Decks, and Other Structures Containing Slag Cement
 - Phase 1: Site Selection and Analysis of Field Cores
 - Phase 2: Evaluation of Different Laboratory Scaling Test Methods
 - Shrinkage
 - The Effect of Ground Granulated Blast Furnace Slag on the Drying Shrinkage of Concrete—A Critical Review of the Literature