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Concrete 3DP: Revolution in Construction?
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Design of the Printing Process and Prediction of Structural Capacity:
Is Trial-And-Error and Large Scale Testing the Answer?

Mechanical properties of 3D printed concrete components: A review

We have been there already!
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Fig. 14. 3DPC spliced beams in different experimental states: (a) Scale model specimen in bending set-up (Salet et al., 2018), (b) Setup of the structural mock-up test D u 0 l I I O d I M I I an O
(Ahmed et al., 2022), (c) Uniform load test on post-tensioned prestressed girder (Vantyghem et al., 2020), (d) Straight beam for the three-point bending test (Asprone

et al,, 2018), (e) Failure pattern for 3DPC beam (Assaad et al., 2020). CO nstru Ctl on beg an 1386
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Small-Scale Experimentation & Computation to Drive Innovation
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Computational Framework
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High-Fidelity Modeling of Fresh Concrete: Coupling SPH and DEM

« Aggregate pieces with real shape
 Real aggregate size distribution

* Fluid fine mortar

* Rigid aggregate particles

« Fiber explicitly simulated
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High-Fidelity Simulations: Fiber Orientation
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Discrete Fresh Concrete (DFC) Model + Fibers

 Aggregate approximated as spheres
 Real aggregate size distribution

* Fluid mortar not explicitly resolved Compression Tension
* Rigid aggregate particles
« Fiber explicitly simulated
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Discrete Fresh Concrete (DFC) Model + Fibers

Velocity jump vector at the centroid of the interaction area
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Discrete Fresh Concrete (DFC) Model: Slump Test

]
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Discrete Fresh Concrete (DFC) Model: L-box Test




Effective Discrete Fresh Concrete (DFC) Model

* Aggregate approximated as spheres
* Real aggregate size distribution

* Fluid mortar not explicitly resolved
* Rigid aggregate particles

* Fiber not explicitly simulated

sin 6 cos ¢
p= [sin 6 sin ¢l

cos 6

The dynamics of an ellipsoidal particle in a viscous fluid is governed by Jeffery's equation

. . . Jeffery, George Barker.

p = W p + A (8 . p — p c £ - pp) "The motion of ellipsoidal particles immersed in a viscous fluid."
Proceedings of the Royal Society of London. Series A, Containing
papers of a mathematical and physical character 102.715 (1922): 161-

2 179.
1 Ttcr
n=n,1—-c)+5—=
31n (Zr) Reinold, Janis, Vladislav GudZuli¢, and Glinther Meschke.
"Computational modeling of fiber orientation during 3D-concrete-printing."

-2 Computational Mechanics 71.6 (2023): 1205-1225.
N c P
O-TO - O-TO 1 ¢ ¢

fm sm _ _ .
i - effective viscosity of the suspension 0y, - yield stress of the fiber-containing mortar
1, - base viscosity Gy, - base yield stress of the matrix
¢ : volume fraction of fibers D rm, Bsm - material-specific constants
r : aspect ratio of the fibers ¢ : volume fraction of solid particles(solid, aggregate)
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DFC Model > Fiber Orientation
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Fluid to Solid Transition (setting): DFC to LDPM

Fluid concrete Concrete setting includes properties Solid concrete
simulated by of both fluid and solid concrete, simulated by
DFC model will be described by combination of LDPM

DFC model and LDPM
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Fluid to Solid Transition (setting): DFC to LDPM

* Inside particle generation
» Surface reconstruction

Surface

DFC model reconstruction
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Initial particle placement Final particle Mesh for LDPM
generated either using placement after flow
casting simulation or
FreeCAD
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Fluid to Solid Transition (setting): DFC to LDPM

@ DFC model LDPM
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Fluid to Solid Transition (setting): The Setting Function
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Measurement of Setting

1. Volume Change Measurements

+ Measures the autogenous and chemical shrinkage and assumes the setting starts when the two curves diverge.

» The shrinkage measurements are error-prone.

» The chemical shrinkage probably doesn’t exist, because self-desiccation and chemical hydration can happen at the
same time

2. Acoustic Emission (AE) Technique

» Detects microcracks and cavitation in concrete during setting and hardening.

* The signals increase too sharply to capture the details during the setting

3. Electrical Conductivity

* Measures the connectivity of the pore solution and assumes a rapid decrease when a solid network forms.

* The initial setting time is at a point where the curve is decreasing and is hard to identify

4. Rheological Testing

* Measures yield stress and viscosity changes during hydration.

* A rapid increase in yield stress marks the transition from fluid to solid.

» Only useful for the early-age behavior of fresh concrete

6. Ultrasonic Pulse Velocity

» Tracks the increase in wave velocity as a solid structure forms.

» The point where wave velocity significantly increases correlates with the setting time.

7. Isothermal Calorimetry

» Monitors heat release during hydration.

+ Derives the hydration profiles that provides valuable insights into the setting characteristics of the concrete.
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Ultrasonic Pulse Velocity (UPV) and Isothermal Calorimetry
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Simulation of Hardened Properties

Alignment Mesh Simplification Exported Mesh
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Hardened Properties |
Experimental Data for

Performance Evaluation

Validation

Digital Specimens
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Conclusions

« The future of concrete 3DP printing hinges on
the adoption of performance-based design
guidelines

« Comprehensive and accurate computational
models are required to predict and design the
printing process as well as the hardened
mechanical properties

* In this presentation we showed work towards
the first of its kind, multiscale computational
framework able to simulate concrete fresh and
hardened behavior as well as the transition
form fluid to solid!
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Questions?
g-cusatis@northwestern.edu
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