

American Concrete Institute

Harvesting of Fly Ash - Sustainable Value and Benefits Examine current technologies in processing coal ash deposits

Harvesting of Fly Ash - Sustainable Value and Benefits

Heidelberg Materials North American Business

May 2023

Heidelberg Materials announced it has completed the purchase of **The SEFA Group**.

The acquisition further strengthens Heidelberg's cementitious footprint in the key Southeastern U.S. market and provides a solid platform for growth on the path to carbon neutrality.

CONCRETE

CONVENTIO

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

aci CONCRETE CONVENTION

Benefits of Recycling Fly Ash

- 1. <u>Environmental Impact</u>: Recycling fly ash reduces the need for landfill space and prevents harmful substances from leaching into the soil and water. This helps mitigate pollution and conserves natural resources.
- 2. <u>Energy Efficiency</u>: Using fly ash in construction materials, such as concrete, reduces the energy required for production. Fly ash can replace a portion of Portland cement, which is highly energy-intensive to produce.
- 3. <u>Cost Savings</u>: Fly ash is often cheaper than traditional materials used in construction. Its use can lower overall project costs while maintaining or improving the quality of the final product.
- 4. <u>Sustainable Construction</u>: Fly ash can be used to produce eco-friendly building materials like bricks, tiles, and paint, promoting sustainable practices in the construction industry.
- 5. <u>Improved Material Properties</u>: Fly ash enhances the strength and durability of concrete, making it more resistant to cracking and extreme weather conditions. It also improves workability and reduces the amount of water needed in the mix.

Technical Benefits of Fly Ash in Concrete

Replacing a portion of cement with performance-enhancing fly ash contributes to short-term and long-term benefits in concrete:

- 1. Increased ultimate strength
- 2. Greater durability
- 3. Improved workability
- 4. Mitigation of Alkali-Silica Reactivity (ASR)
- 5. Reduced segregation and drying shrinkage
- 6. Enhanced sulfate resistance

- 7. Reduced bleeding
- 8. Improved pumpability
- 9. Improved watertightness
- 10. Reduced heat of hydration
- 11. Reduced efflorescence
- 12. Improved resistance in marine environments

Theoretical Supply vs Demand for 300k Ton Source

Benefits of Recycling Harvested Coal Ash

ASTM C618: Standard Specification for Coal Ash for Use in Concrete

- Chemical Composition
- Moisture
- Fineness
- Loss on Ignition (Carbon)

CONVENTION

Any harvesting program will need several processing steps to beneficiate the material for concrete use. These steps will include screening in the basin to remove trash and debris, drying, classifying, grinding and possibly **carbon treatment** to ensure compliance with relevant specifications and market acceptance.

Drying Methods

Flash Dryer

Rotary Dryer

CONCRETE CONVENTION

Screening / Classifying

Air Classifier

Vertical Roller Mill

Grinding / Milling

Cage Mill

Ball Mill CONCRETE CONVENTION

Any harvesting program will need several processing steps to beneficiate the material for concrete use. These steps will include screening in the basin to remove trash and debris, drying, classifying, grinding and possibly **carbon treatment** to ensure compliance with relevant specifications and market acceptance.

Any harvesting program will need several processing steps to beneficiate the material for concrete use. These steps will include screening in the basin to remove trash and debris, drying, classifying, grinding and possibly carbon treatment to ensure compliance with relevant specifications and market acceptance.

Drying	Classifying	Grinding	Carbon Treatment	
Moisture < 3% Material is de-watered in the landfill or basin to less than 25% moisture. Final drying can be accomplished with flash dryers, rotary dryers or fluid bed dryers among others	Fineness Specifications Max 34% Retained on #325 Max 10% Retained on #100 This step separates any co-mingled bottom ash, slag, etc. from fly ash	Fineness Specifications 34% Retained on #325 10% Retained on #100 Any oversized material can be disposed of or ground to meet fineness specifications (ball mill, roller mill, jet mill, etc.)	LOI < 6% for Class F Passivation/Separation/Removal Thermal Beneficiation allows for recovery of waste heat to be used for drying step	
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE CONCRETE				

Loss on ignition (LOI) is a measurement of unburned carbon remaining in the ash. Specifications of the American Society for Testing and Materials (ASTM C 618) for fly ash used in concrete limit the LOI to 6 percent. Values greater than 2 to 3 percent, however, will probably require you to significantly increase the air entraining agent dosage or possibly require **carbon treatment** to ensure compliance with relevant specifications and market acceptance.

Loss on ignition (LOI) is a measurement of unburned carbon remaining in the ash. Specifications of the American Society for Testing and Materials (ASTM C 618) for fly ash used in concrete limit the LOI to 6 percent. Values greater than 2 to 3 percent, however, will probably require you to significantly increase the air entraining agent dosage or possibly require **carbon treatment** to ensure compliance with relevant specifications and market acceptance.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Beneficiation

Product Specifications / Requirements:

- LOI (Carbon)
- Particle Size
- Carbon Reactivity
- Air Entrainment
- Fly Ash Reactivity with Cement
- Color
- Trace Constituents (Hg, etc.)

CONVENTION

Manufactured Product => **Consistent Quality**

Harvested Feed **Consistent Supply**

=>

CONVENTION

Harvested Coal Ash Beneficiation Facility 500,000 Tons Processed Annually

an it hands

Raw Feed Storage

Product Storage

a fi hand

CONVENT

Non-CCR and Reject / Waste Streams

Stream	Description	Rejects (mass %)
Trash & Debris (Non-CCR)	Overburden, underburden, biomass, etc.	3% to 10%
Comingled Wastes / Contaminates	Gypsum, scrubber wastes, spoils, etc.	0% to 100%
Beneficiation Non- Spec Streams	Oversized, High LOI, etc.	0% to 50%
Beneficiation Waste Streams / Rejects	Chemical Treatment	15% to 50%
	Electrostatic Separation	10% to 50%
	Thermal Treatment	0% to 10%
	I	
WORLD'S GATHERING PLAC	CONVENTION	

Summary and Conclusions

- 1. Utilizing coal ash in concrete provides economic and technical benefits
- 2. Displacing cement with ash lowers global CO2 improving sustainability
- 3. Production Coal Ash supply faces logistic challenges, and its supply continues to decrease
- 4. Harvesting and beneficiating coal ash can fill the gap between supply and demand
- 5. There is no one size fits all when it comes to coal ash beneficiation

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

