Treatment of residual cementitious fines obtained through innovative recycling for the replacement of primary cement

Anna Alberda van Ekenstein

April 2025

Contents

- Background
- Materials and methods
- Potential of treatment methods
- Conclusion

The need for circular concrete

- World population continues to grow
 - Expanding urban areas
 - Improving and increasing existing structures
 - Need for construction materials
- Increasing demand construction materials
 - Concrete largest growth rate
 - Already visible in the demand of cement
 - Consequences for resource depletion and CO2 emissions

The need for circular concrete

- Concrete is responsible for 8% of the greenhouse gas emissions
 - Main contributor: production of cement
 - 90% of these emissions come from the clinker production
 - Process emissions
 - Energy-consuming emissions

Global warming potential

Traditional versus innovative recycled materials

• Traditional concrete recycling

- Support materials in road foundations and other infrastructure
- Two fractions
 - Coarse aggregate
 - Fine aggregate
- Innovative concrete recycling
 - Potential to replace primary materials
 - At least three fractions
 - Secondary gravel
 - Secondary sand
 - Concrete fines (old binder)

Research aim

Determine the potential of various treatment methods for the upcycling of residual cementitious fines to replace cement.

Mortar mixtures

Туре	Replacement [%]	OPC [g]	Fly ash [g]	GGBS [g]	RCF [g]	Sand [g]	Water [g]
CEM I	0	450	0	0	0	1350	225
	50	225	0	0	225	1350	225
	75	112.5	0	0	337.5	1350	225
	100	0	0	0	450	1350	225
CEM III/B	0	135	0	315	0	1350	225
	50	67.5	0	315	67.5	1350	225
	75	33.75	0	315	101.25	1350	225
	100	0	0	315	135	1350	225
CEM II/B-V	0	315	135	0	0	1350	225
	50	157.5	135	0	157.5	1350	225
	75	78.75	135	0	236.25	1350	225
	100	0	135	0	315	1350	225

Treatment methods for upcycling

Grinding

From 0-63 µm to 0-32 µm Higher specific surface area Unreacted cement cores

Carbonation

High CO₂ concentration Carbon capture Reactive silica-gel

Oven Heating Temperature: 900 °C Dehydration cement

Flash Calcination Temperature: 750 °C Fast heating and cooling

Results – CEM I based mortar

URBAN

MINE

University of

Technology

е

Results – CEM III/B based mortar

URBAN

MINE

University of

Technoloav

е

Results – CEM II/B-V based mortar

URBAN

MINE

е

University of Technology

Characterisation

TGA of treatment methods

Flash Calcination – Density and particle size

Material	Density [g/cm ³]	D(10) [µm]	D(50) [µm]	D(90) [µm]
F1	2.332	13.42	48.67	84.78
F1_FC	2.677	9.46	36.72	69.06
CEMI	3.067	4.57	19.12	36.68

Flash Calcination - Isothermal Calorimetry

Conclusion

The recycling process should shift from the current traditional to innovative recycling techniques with a focus on producing high-quality residual cementitious fines due to its potential to fully replace primary clinker.

For all mortar mixtures, Flash Calcination shows the highest potential as a technique for the upcycling of residual cementitious fines to replace primary Portland cement in new mixtures.

ţ

CEM III/B based mortar obtained the best results. Reduction in compressive strength was the lowest for these mortars.

Thank you for your attention! Questions?

