Exploring early age deformations in 3D printed concrete walls through Digital Image Correlation (DIC)

Aniket Kumar Patel, Avinaya Tripathi, Prof. Narayanan Neithalath

School of Sustainable Engineering and the Built Environment, Arizona State University

Presented by: Avinaya Tripathi

Outline

- Problem statement
- Background information
 - Different measurement techniques
 - Restraint effect & free shrinkage
- Shrinkage behaviour in 3D printed concrete
 - Height-adjusted shrinkage analysis
 - Thickness-adjusted shrinkage analysis
- Conclusion

3D Printing at ASU

Problem Statement

- Higher binder content
- Absence of formwork
- Immediate exposure conditions

Due to use of higher binder content and immediate exposure conditions – Shrinkage is a challenge

(Roussel, N. et al. 2018; Qian & Kawashima, 2018; Markin et al. 2024)

Early-age shrinkage measurement techniques

Digital Image correlation (DIC), was used to evaluate the early-age shrinkage behaviour

(D.S Kurup et al. 2024; Moelich et al. 2020, J. Sun et al. 2013, B.Pan et al, 2009)

Experimental matrix

Mixture ID	Mass fraction of binder ingredients				Water-to- binder (w/b)	Superplasticizer dosage (% by	Superplasticizer dosage (% by
	OPC	Limestone	Fly ash	Type IP	ratio, by mass	mass of binder): Cast specimen	mass of binder): Print specimen
OPC	1.0	0	0	0	0.35	0.4	-
L ₃₀	0.7	0.3	0	0	0.35	0.4	0
$L_{15}F_{15}$	0.7	0.15	0.15	0	0.35	0.4	0
IP ₃₅	0	0	0	1	0.35	1.0	0.5

Measurement of early-age deformation in 3D printed concrete wall

Measurement of Shrinkage Behaviour in 3D Printed Concrete - Validation ??

• Cast specimens were produced using 3D printable mixtures, and shrinkage was measured using both conventional extensometers and Digital Image Correlation (DIC).

Shrinkage Behaviour in 3D Printed Concrete - Restraint effect & free shrinkage

Printed Wall Element

DIC Analysis

Shrinkage Behaviour in 3D Printed Concrete

> Single filament

Restraint Effect

L

Restraint against height

R₁ = Restraint coefficient against height

ε₁ = Height adjusted strain (Observed Strain with Height Restraint Effect Removed)

Shrinkage Behaviour in 3D Printed Concrete

Single filament

Restraint Effect

Restraint against thickness

 ε_{free} independent of R₁ (restraint against height) and R₂ (restraint against thickness)

Shrinkage Behaviour in 3D Printed Concrete

Double filament

Conclusion

- Displacement and strain fields showed significant geometric restraint effect along both height and the thickness of the wall.
- Normalization of the observed strain was performed using two restraint coefficients (R₁ for height and R₂ for thickness) to extract the free shrinkage component.
- The free shrinkage response was found to be dependent on concrete mix design and independent on the wall geometry.

Thank you for your attention