Carolyn Hansson: Contribution to Electrochemical Chloride Extraction, Etc.

Dave Whitmore Vector Corrosion Technologies

1989: First Application of Electrochemical Chloride Extraction

Chloride Test Results for Pier S-19

Electrochemical Chloride Extraction (ECE)

- Treatment process to reduce corrosion in chloride-contaminated concrete structures
- DC voltage applied between reinforcing steel and a temporary anode applied on the concrete surface
- Chlorides migrate from the reinforcing steel toward the temporary anode (outside the concrete)
- Hydroxyl ions (OH-) are generated on the steel surface
- Chloride to Hydroxyl Ratio is reduced
- Steel passivates and remains in passive conditionaci

What Aspects of ECE did Carolyn Research?

- Effectiveness with admixed and surface applied chlorides.
- Effectiveness with different steel configurations.
- Changes to concrete interface and bond.
- Changes to corrosion rates and potentials after treatment.
- Data with different electrolyte.

 This research provided laboratory data to define parameters and guide specifications and standards which have been developed over the last 30 years.

Corrosion Potential Data over 20 Years

	No	rth Face		S	outh Face		
Percentage of Readings	(Ur	ntreated)		(Electroc Extra	hemical Ch ction Treate	loride ed)	
	> -200 mV	-200 to -350	<-350	> -200 mV	-200 to -350	<-350	
Pre-Treatment	0	85	15	0	96	4	
1 Yr. After	41	59	0	100	0	0	
2 Yr. After	41	59	0	100	0	0	
3 Yr. After	26	74	0	96	4	0	
4 Yr. After	26	70	4	96	4	0	
5 Yr. After	19	74	7	96	4	0	
6 Yr. After	26	59	15	93	7	0	
7 Yr. After	30	63	7	96	4	0	
8 Yr. After	11	78	11	93	7	0	
15 Yr. After	0	74	26	100	0	0	
20 Yr. After	25	75	0	100	0	0	
THE WORLD'S G	ATHERING PLAC	E FOR ADV	ANCING C	ONCRETE	aci CON		TE

Corrosion Rate Data over 20 Years

	North Face	South Face
Average		
Corrosion Rate		(Electrochemical Chloride
(uA/cm2)	(Untreated)	Extraction Treated)
Pre-Treatment	1.24	1.61
1 Yr. After	1.24	0.18
2 Yr. After	0.75	0.08
3 Yr. After	0.57	0.06
4 Yr. After	0.54	0.04
5 Yr. After	1.49	0.17
6 Yr. After	1.69	0.18
7 Yr. After	1.01	0.15
8 Yr. After	1.64	0.17
15 Yr. After	0.93	0.37
20 Yr. After	0.30	0.04
E WORLD'S GATH	ERING PLACE FOR ADVANCING CON	

Permeability and Resistivity

kT (10 ⁻¹⁶ m²)	Resistance (ohm)
0.58	42,200
0.26	Dielectric
0.54	86,200
0.09	Dielectric
	0.58 0.26 0.54 0.09

Annual Inspections then 15, 20 and 30 Years After ECE

- No Change in Appearance
- No Delaminations
- No Spalled Concrete
- Low Corrosion Potentials
- Low Corrosion Rate Measurements
- Visual Inspection at 30 Years

VDOT 34th St. Over I-395 Deck ECE (1995)

VDOT I-395 Over I-395 (Arlington) Bridge Deck

• Infrared Thermography (2021) (Raw Data)

• Delaminations Identified by Infrared Thermography (2021)

- IR Survey by Nexco West
- IR Thermography produced similar results to manual sounding
- Substantial difference in deterioration of the ECE Treated and Untreated Spans
- Delaminations Identified by Sounding (2021)
 Span 1
 Span 2
 Span 3
 Span 4
 Span 5
 CRETE
 Untreated

Winnipeg, Manitoba: Highway 75/100 Substructure

- Bridge Built in 1959
- Chloride Contamination
 due to Leaking Joints
- Concrete Repairs to All Three Piers in 1998
- 1998 ECE Pilot (Pier 2)
- 2002 ICCP Pilot (Pier 3)
- Pier 4 Maintained as Control

Concrete Repairs Required when Deck was Replaced in 2013

<u>Pier</u>

- Control Pier
- ICCP Pier (2002)
- ECE Pier (1998)

Quantity of Repairs in 2013

250.0 m² (2,690 ft²) 71.2 m² (766 ft²) 9.5 m² (102 ft²)

96% Reduction in Repairs completed on ECE Treated Pier vs the Control Pier

Conclusions

- ECE is an electrochemical treatment process which can increase the alkalinity and reduce the chloride concentration around the steel.
- ECE can provide long term corrosion benefits.
- ECE is not applicable in all situations
- Research has helped to define parameters and guide specifications and standards which have been developed over the last 30 years.

Thank You

We Save Structures

