Rheological Comparison of Self-Compacting Concretes Prepared with High Filler – Low Water Ternary Slag Cement and Portland-Limestone Cement

> Matthew Cruickshank R&D Manager Ecocem Materials

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

1. The cement and concrete industries currently emit too much CO_2 .

- 1. The cement and concrete industry currently emit too much CO_2 .
- 2. The demand for concrete is so high that it is not feasible to replace concrete with existing alternatives (steel, timber, etc.).

- 1. The cement and concrete industries currently emit too much CO_2 .
- 2. The demand for concrete is so high that it is not feasible to replace concrete with existing alternatives (steel, timber, etc.).
- 3. The best short-term solution is to use blended cements where clinker is replaced as much as possible with supplementary cementitious materials (SCMs).

- 1. The cement and concrete industries currently emit too much CO_2 .
- 2. The demand for concrete is so high that it is not feasible to replace concrete with existing alternatives (steel, timber, etc.).
- 3. The best short-term solution is to use blended cements where clinker is replaced as much as possible with supplementary cementitious materials (SCMs).
- 4. Commonly used SCMs, like GGBS and fly ash, are not available in sufficient quantities.

- 1. The cement and concrete industries currently emit too much CO_2 .
- 2. The demand for concrete is so high that it is not feasible to replace concrete with existing alternatives (steel, timber, etc.).
- 3. The best short-term solution is to use blended cements where clinker is replaced as much as possible with supplementary cementitious materials (SCMs).
- 4. Commonly used SCMs, like GGBS and fly ash, are not available in sufficient quantities.
- 5. Blended cements prepared with SCMs that are sufficiently available geographically and in terms of volume are the best solution.

Sustainability Metrics Developed by Damineli

Where:

b_{i,CS} = binder intensity
B = mass of reactive binder per m³ of concrete
CS = compressive strength at 28 days

 $c_{i,CS} = \frac{C}{CS}$

Where:

 $c_{i,CS} = CO_2$ intensity C = amount of CO₂ released per m³ of concrete CS = compressive strength at 28 days Sustainability Metrics Developed by Damineli

Favours low clinker %

<u>CO₂ Intensity</u>

Binder Intensity

 $b_{i,CS} = \frac{B}{CS}$

Where:

b_{i,CS} = binder intensity
B = mass of reactive binder per m³ of concrete
CS = compressive strength at 28 days

Where:

 $c_{i,CS} = CO_2$ intensity C = amount of CO₂ released per m³ of concrete CS = compressive strength at 28 days

 $c_{i,CS} = \frac{C}{CS}$

Sustainability Metrics Developed by Damineli

Favours low SCM %

Binder Intensity

Favours low clinker %

<u>CO₂ Intensity</u>

Where:

 $b_{i,CS}$ = binder intensity B = mass of reactive binder per m³ of concrete CS = compressive strength at 28 days $c_{i,CS} = \frac{C}{CS}$

Where:

 $c_{i,CS} = CO_2$ intensity C = amount of CO₂ released per m³ of concrete CS = compressive strength at 28 days

Limited by standards

Limited by rheology

- Muller (KIT)
- Damineli (USP)
- Vogt (KTH Stockholm)
 de Grazia (UOttawa)

What do we expect from concrete?

Strength
Ease of Use
Cost Competitiveness
Durability

What do we expect from concrete?

Ease of Use
Cost Competitiveness
Durability

•Strength

What do we expect from concrete?

Strength Beyond slump, how is the rheology?
Ease of Use
Cost Competitiveness
Durability

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

Typical ACT Formulation

[□] Clinker □ SCMs □ Limestone Filler

Typical ACT Formulation

With ACT cements, a reduction in the watercement ratio compared to conventional concrete is needed to ensure strength and durability.

Clinker SCMs Limestone Filler

Typical ACT Formulation

■ Clinker ■ SCMs ■ Limestone Filler

With ACT cements, a reduction in the watercement ratio compared to conventional concrete is needed to ensure strength and durability.

When working with reduced water-cement ratios, typically the cement content is increased to compensate for the reduction in paste volume (ex: HPC).

Typical ACT Formulation

■ Clinker ■ SCMs ■ Limestone Filler

With ACT cements, a reduction in the watercement ratio compared to conventional concrete is needed to ensure strength and durability.

When working with reduced water-cement ratios, typically the cement content is increased to compensate for the reduction in paste volume (ex: HPC).

Our objective is to reduce the water content while minimizing the increase in cement content as much as possible.

Typical ACT Formulation

■ Clinker ■ SCMs ■ Limestone Filler

With ACT cements, a reduction in the watercement ratio compared to conventional concrete is needed to ensure strength and durability.

When working with reduced water-cement ratios, typically the cement content is increased to compensate for the reduction in paste volume (ex: HPC).

Our objective is to reduce the water content while minimizing the increase in cement content as much as possible.

Ecocem's ACT Technologies

ACT Technology

ACT in Ready-Mix Concrete

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC

Case Study: ACT vs PLC in SCC

Performance Targets

Spread Flow:700 mmStrength:50 MPa at 28 days

Minimal changes to mix design, rheological properties, and productivity.

Case Study: ACT vs PLC in SCC

Performance Targets

Spread Flow:700 mmStrength:50 MPa at 28 days

Minimal changes to mix design, rheological properties, and productivity.

Case Study: ACT vs PLC in SCC

Performance Targets

Spread Flow:700 mmStrength:50 MPa at 28 days

Minimal changes to mix design, rheological properties, and productivity.

ACT1 - GGBS

PLC vs Ecocem ACT – Mortar Testing

		PLC	ACT
Sand (0/4 mm)		785	805
Gravel (2/6 mm)		200	220
Gravel (6/10 mm)		680	710
PLC	[kg/m³]	400	0
ACT		0	400
Ground Limestone		120	120
Effective Water		198	165
Admix 1		0.75%	-
Admix 2	[0/hwh]	0.80%	-
Admix 3		-	0.84%
Admix 4		-	0.06%
Water/Cement		0.50	0.41
Water/Powder	[-]	0.38	0.32

		PLC	ACT
Sand (0/4 mm)		785	805
Gravel (2/6 mm)		200	220
Gravel (6/10 mm)		680	710
PLC	[kg/m³]	400	0
ACT		0	400
Ground Limestone		120	120
Effective Water		198	165
Admix 1		0.75%	-
Admix 2	[0/hwh]	0.80%	-
Admix 3		-	0.84%
Admix 4		-	0.06%
Water/Cement		0.50	0.41
Water/Powder	[-]	0.38	0.32

No change was made to the cement content. Both mixes prepared with 520 kg/m³ of cement (875 lbs/y^3) .

		PLC	ACT
Sand (0/4 mm)		785	805
Gravel (2/6 mm)		200	220
Gravel (6/10 mm)		680	710
PLC	[kg/m³]	400	0
ACT		0	400
Ground Limestone		120	120
Effective Water		198	165
Admix 1		0.75%	-
Admix 2	[0/hwh]	0.80%	-
Admix 3		-	0.84%
Admix 4		_	0.06%
Water/Cement		0.50	0.41
Water/Powder	[-]	0.38	0.32

No change was made to the cement content. Both mixes prepared with 520 kg/m³ of cement (875 lbs/y^3) .

Adjustment in the aggregate contents based on reduction in the water content.

		PLC	ACT
Sand (0/4 mm)		785	805
Gravel (2/6 mm)		200	220
Gravel (6/10 mm)		680	710
PLC	[kg/m ³]	400	0
ACT		0	400
Ground Limestone		120	120
Effective Water		198	165
Admix 1		0.75%	
Admix 2	[% bwb]	0.80%	
Admix 3			0.84%
Admix 4			0.06%
Water/Cement	r i	0.50	0.41
Water/Powder	[-]	0.38	0.32

No change was made to the cement content. Both mixes prepared with 520 kg/m³ of cement (875 lbs/y³).

Adjustment in the aggregate contents based on reduction in the water content.

Different admixtures and dosages used due to differences in surface chemistry.

		PLC	ACT
Sand (0/4 mm)		785	805
Gravel (2/6 mm)		200	220
Gravel (6/10 mm)		680	710
PLC	[kg/m³]	400	0
ACT		0	400
Ground Limestone		120	120
Effective Water		198	165
Admix 1		0.75%	
Admix 2	[% hwh]	0.80%	
Admix 3			0.84%
Admix 4			0.06%
Water/Cement	[]	0.50	0.41
Water/Powder	[-]	0.38	0.32

No change was made to the cement content. Both mixes prepared with 520 kg/m³ of cement (875 lbs/y³).

Adjustment in the aggregate contents based on reduction in the water content.

Different admixtures and dosages used due to differences in surface chemistry.

The differences in the w/c and w/p demonstrate the extent of the rheological challenge.

		PLC	ACT
Spread Flow	[mm]	670	710
	[in]	26.4	28.0
V-Funnel	[s]	7	9
L-Box	[-]	0.92	0.89
Fresh	[kg/m ³]	2347	2370
Density	[lbs/yd³]	3956	3994
Air Content	[%]	4.2	2.8

		PLC	ACT
Spread Flow	[mm]	670	710
	[in]	26.4	28.0
V-Funnel	[S]	7	9
L-Box	[-]	0.92	0.89
Fresh	[kg/m ³]	2347	2370
Density	[lbs/yd³]	3956	3994
Air Content	[%]	4.2	2.8

Minor differences observed in terms of spread flow.

		PLC	ACT
Spread Flow	[mm]	670	710
	[in]	26.4	28.0
V-Funnel	[s]	7	9
L-Box	[-]	0.92	0.89
Fresh	[kg/m³]	2347	2370
Density	[lbs/yd³]	3956	3994
Air Content	[%]	4.2	2.8

Minor differences observed in terms of spread flow.

ACT concrete is slightly more viscous. Difference is minor considering the difference in w/c.

		PLC	ACT
Connect Flower	[mm]	670	710
spread Flow	[in]	26.4	28.0
V-Funnel	[s]	7	9
		0.92	0.89
Fresh	[kg/m ³]	2347	2370
Density	[lbs/yd³]	3956	3994
Air Content	[%]	4.2	2.8

Minor differences observed in terms of spread flow.

ACT concrete is slightly more viscous. Difference is minor considering the difference in w/c.

Both concretes exhibit strong self-leveling properties.

		PLC	ACT
Spread Flow	[mm]	670	710
	[in]	26.4	28.0
V-Funnel	[s]	7	9
		0.92	0.89
Fresh	[kg/m³]	2347	2370
Density	[lbs/yd³]	3956	3994
Air Content	[%]	4.2	2.8

Minor differences observed in terms of spread flow.

ACT concrete is slightly more viscous. Difference is minor considering the difference in w/c.

Both concretes exhibit strong self-leveling properties.

The higher air content measured with the PLC also favours lower viscosity.

Rotational Rheometry

→PLC →ACT

Strength Development

ACT presents lower early strength development, but similar strengths are obtained at 28 days.

Binder Intensity

 $b_{i,CS} = \frac{B}{CS}$

Where:

b_{i,CS} = binder intensity
B = mass of reactive binder per m³ of concrete
CS = compressive strength at 28 days

360 kg/m³ clinker ÷ 62 MPa

5.8 (kg/m³)/MPa

ACT

80 kg/m³ clinker + 120 kg/m³ GGBS ÷ 59 MPa **3.4 (kg/m³)/MPa**

Why High Filler – Low Water Cements?

HFLW in Practice: ECOCEM's ACT

Low Carbon SCC: HFLW vs. PLC