Practical Implementation of Internally Cured Slag Cement Concrete Using Superabsorbent Polymers

> Chibueze Sylvester Ajuonuma (PhD Student) Dr. Raikhan Tokpatayeva Prof. Jan Olek (Co-PI) Lyles School of Civil and Construction Engineering

> > Prof. Kendra A. Erk (PI)

School of Materials Engineering

APRIL 02, 2025.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Outline

- Research overview
 - Introduction
 - Goal & Objectives
 - Laboratory Experiment
 - Experimental Overview
 - Methodology
 - Materials
 - Methods
 - Concrete Mix Design
 - Results and Discussions
 - Workability (Slump) and Air Content
 - Strength Characteristics (Flexural, Tensile and Compressive Strength)
 - Scaling Resistance
 - Chloride ion penetration
 - Rate of Water Absorption
 - Resistivity and Formation factor
 - > Summary

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

internal curing.

MOTIVATION

The growing demand for sustainable construction is

driving innovative solutions aimed at enhancing the

durability and service life of concrete infrastructure

by improving the microstructure quality through

Objectives

Materials

Superabsorbent polymers (SAPs) are one such innovations, which create reservoirs in concrete that provides additional water for **optimum hydration** within the cement matrix.

Internal curing.

relies on the controlled release of water within concrete to enhance

aci

CONCRETE

ONVENT

- ✓ Cement hydration,
- ✓ Mitigate self desiccation [1].

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Introduction

Previous Research

Research Goals &

SAP Delivery

Materials

Durable concrete usage helps;

Decrease CO₂ emissions and energy consumption

Decrease frequency of replacement of existing structures

Increase return on investment

Reduce maintenance costs

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Introduction

Dry SAP

Wet SAP

Superabsorbent polymers (SAPs) popularly known as **hydrogels**, are cross-linked polymers with capability of absorbing large volume of fluid in comparison to its own mass, forming insoluble gel [2].

SAP Delivery

They act as;

- ✓ Internal water reservoirs
- ✓ Alternative to pre-wetted lightweight aggregates (LWA) for internal curing purposes.

Benefits:

- \checkmark Improve hydration
- ✓ Reduce moisture gradient
- Mitigate durability challenges in cementitious systems
 - Drying and autogenous shrinkage,
 - Scaling resistance (by improving strength and minimizing near-surface drying)
 - Improve quality of microstructure (reduce chloride permeability, etc.)

CONVENT

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

Materials

Previous Research

Superabsorbent polymers (SAPs) as internal curing agents

Water-filled SAP particles ("hydrogels") release water during curing to fuel the hydration reaction from the inside.

- Comparable or improved mechanical properties
- Reduces autogenous shrinkage
- Improves hydrations [1] *

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Increases durability [6],[7] *

Output

SAP Deliverv

Materials

- Absorption capacity of SAP in cement mortar
- When in the mixing sequence should SAP be added
- Is extra water required to maintain workability of mortar using SAP.
- Effect of extra water on mechanical properties of SAP mortar [5].

Adams, C. J., Bose, B., Mann, E., Erk, K. A., Behnood, A., Castillo, A., Rodriguez, F. B., Wang, Y., & Olek, J. (2022). Superabsorbent polymers for internally cured concrete (Joint Transportation Research Program Publication No. (aci) CONCRETE CONVENTION FHWA/IN/JTRP-2022/04). West Lafayette, IN: Purdue University. https://doi.org/10.5703/1288284317366

SAP Deliverv

Project Goal

To determine how **delivery method** and **mixture composition** influence the curing performance of concrete containing a commercial SAP formulation and **Type IL cement slag-cement**, and colloidal **nanosilica**.

Research Objectives

- 1. Evaluate the **internal curing performance** of commercial SAP in concrete mixtures containing Type IL cement as well as slag-cement, and colloidal nanosilica.
- 2. Develop and evaluate practical field **implementation strategies** to successfully deliver and disperse SAP in concrete mixtures.
- 3. Conduct field trials to compare the **strength** and **durability** of SAP-containing mixtures with mixtures cured with curing compound.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Introduction

Previous Research

Acsearch Goals Objectives SAP Delivery Strategy

Materials

Dissolvable bag enclosed in an outer, waterproof plastic bag (outer bag removed before the dissolvable bag introduced to the mixer)

Packaged SAP particles Approx. 1 lb. of dry SAP is needed for 1 cu. yd. class C concrete (0.2% SAP by weight of binder)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

LABORATORY EXPERIMENTS

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Evaluate the impact of SAP delivery method, on fresh properties, mechanical and durability properties of SAP-modified concrete.

Mix Design

| No. | Mix Description | w/b ratio | Cement
(kg/m3) | Coarse Agg.
(kg/m3) | Fine Agg
(kg/m3) | Water
(kg/m3) | Slag
(kg/m3) | SAP
(kg/m3) | HRWRA
(mL/100kg) | AEA
(mL/100kg) |
|-----|-----------------|-----------|-------------------|------------------------|---------------------|------------------|-----------------|----------------|---------------------|-------------------|
| 1 | Reference | 0.44 | 390.39 | 1007.36 | 706.57 | 171.77 | | | - | 50 |
| 2 | Ref+SAP_DB | 0.44 | 390.39 | 1007.36 | 706.57 | 171.77 | | | - | 50 |
| 3 | Ref+SAP_DP | 0.44 | 390.39 | 1000.36 | 706.57 | 171.77 | | 0.78 | 400 | 50 |
| 4 | Ref+S+SAP_DB | 0.44 | 273.27 | 1000.36 | 706.57 | 171.77 | 117.12 | 0.78 | 400 | 50 |
| 5 | Ref+S+SAP_DP | 0.44 | 273.27 | 1000.36 | 706.57 | 171.77 | 117.12 | 0.78 | 400 | 50 |

| Abbreviation | Meaning | | | | | |
|--------------|-----------------|--|--|--|--|--|
| DB | Dissolvable Bag | | | | | |
| DP | Direct Pour | | | | | |

Target Slump and Air Content

| Slump (inches) | Air Content (%) |
|----------------|-----------------|
| 3 - 5 | 5 - 8 |

Dissolvable Bags

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Hydration Kinetics

Drying Shrinkage

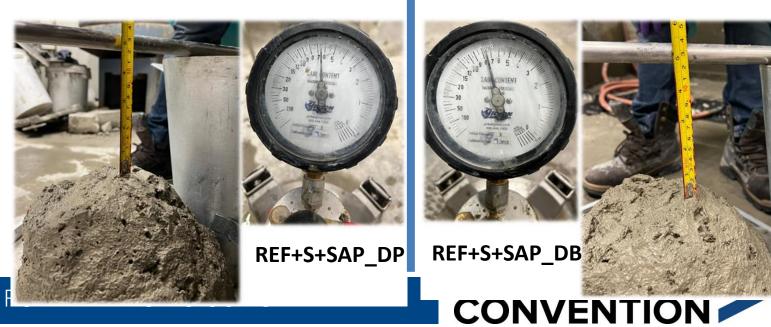
SAP Delivery

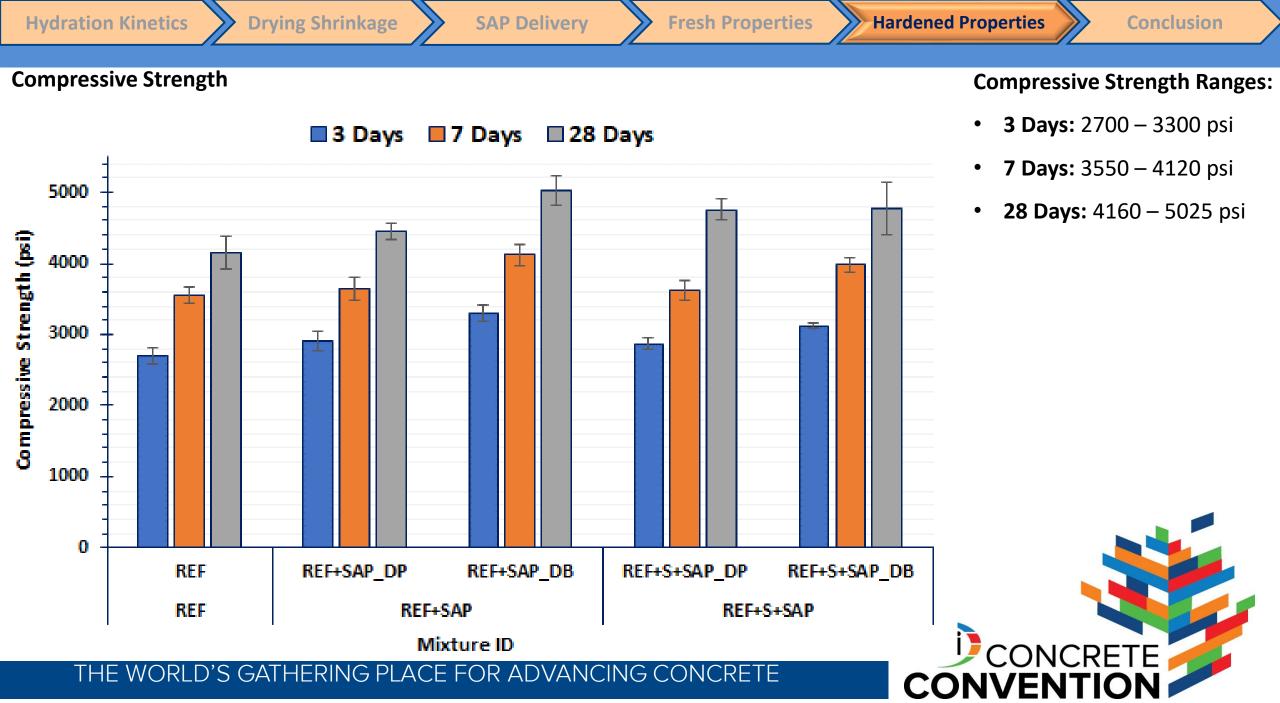
Fresh Properties

Hardened Properties

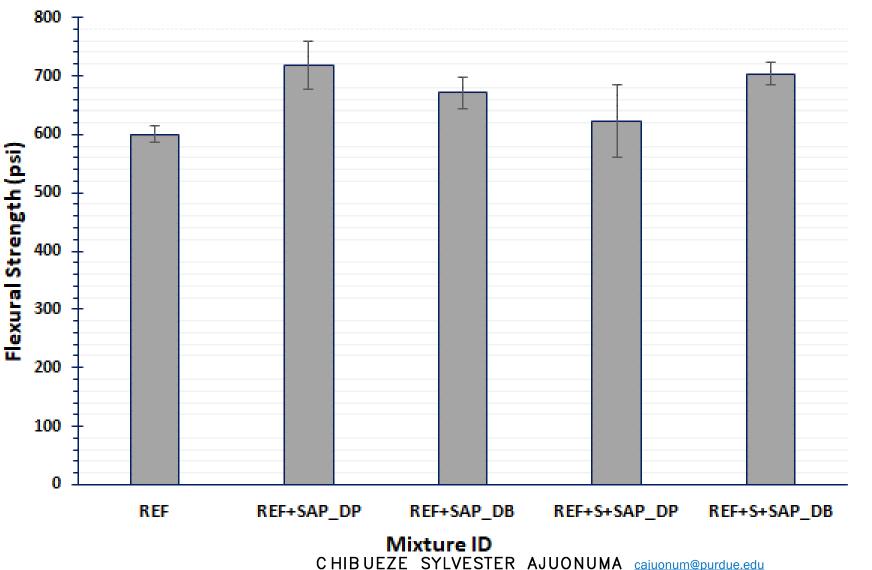
Conclusion

Slump and Air Content


| Mix Description | Slump
(inches) | Air Content
(%) |
|-----------------|-------------------|--------------------|
| REF | 7.0 | 7.0 |
| REF+SAP_DP | 4.5 | 7.5 |
| REF+SAP_DB | 5.0 | 6.5 |
| REF+S+SAP_DP | 4.75 | 6.6 |
| REF+S+SAP_DB | 4.75 | 7.5 |



REF+SAP_DB


THE WORLD'S GATHERING PLACE

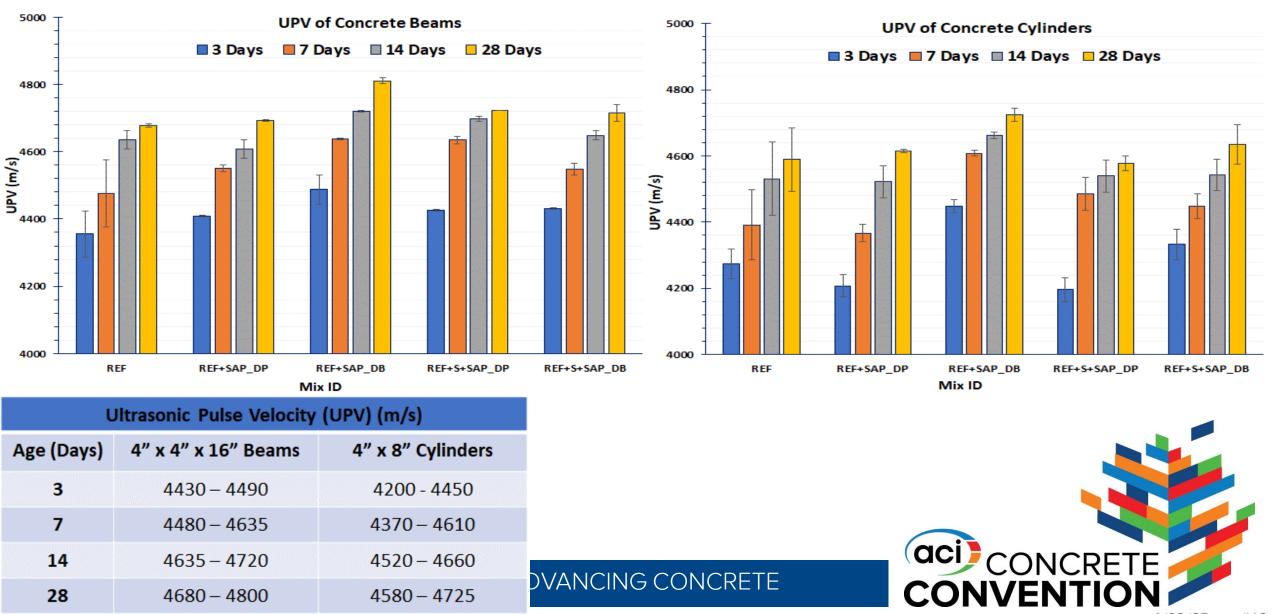
aci

Flexural Strength

Flexural Strength at 28 Days

Flexural Strength Range:

28 Days: 600 – 720 psi


 Direct addition of SAP (DP) into the concrete mixtures resulted to increased flexural strength of 20% while SAP addition using dissolvable bags increased the strength value by 12% at 28 days

> CONCRETE VENTION

> > ·#15·

4/02/25

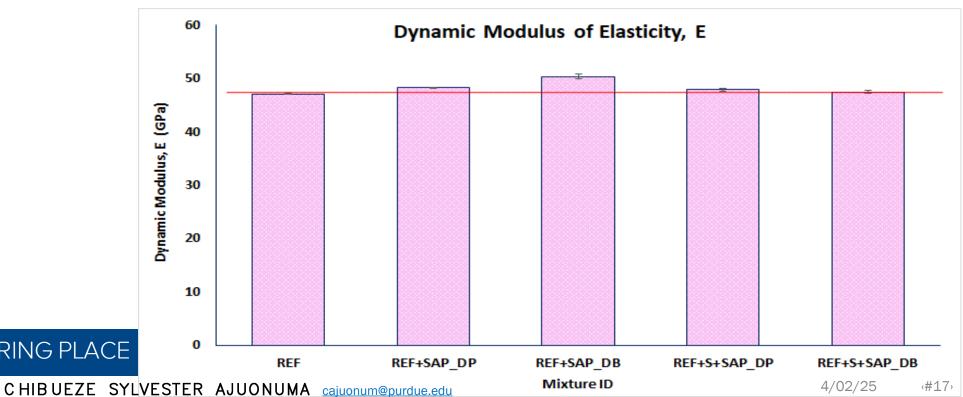
Ultrasonic Pulse Velocity (UPV)

Hydration Kinetics

(1)

Dynamic Elastic Modulus, E (ASTM C597-22 Standard Test Method for Ultrasonic Pulse Velocity through Concrete

5.1 The ultrasonic pulse velocity, V, of longitudinal ultrasonic stress waves in a concrete mass is related to its elastic properties and density according to the following relationship:


$$V = \sqrt{\frac{E(1-\mu)}{\rho(1+\mu)(1-2\mu)}}$$

where:

- E = dynamic modulus of elasticity,
- u = dynamic Poisson's ratio, and

 ρ = density.

| | | UPV | Resonant Frequency (Flexure) | | | | | |
|-----------------|-----------------|--------------------|------------------------------|------------------|--|--|--|--|
| | Mix Deceription | Dynamic Modulus of | Dynamic Modulus of | Shear Modulus of | | | | |
| Mix Description | | Elasticity, E | Elasticity, E | Elasticity, G | | | | |
| | | GPa | GPa | GPa | | | | |
| | REF | 47.07 | 33.72 | 15.68 | | | | |
| į | REF+SAP_DP | 48.25 | 36.73 | 17.08 | | | | |
| | REF+SAP_DB | 50.29 | 38.14 | 17.74 | | | | |
| I | REF+S+SAP_DP | 47.84 | 36.52 | 16.99 | | | | |
| Į | REF+S+SAP_DB | 47.42 | 35.51 | 16.52 | | | | |

THE WORLD'S GATHERING PLACE

45

40

35

30

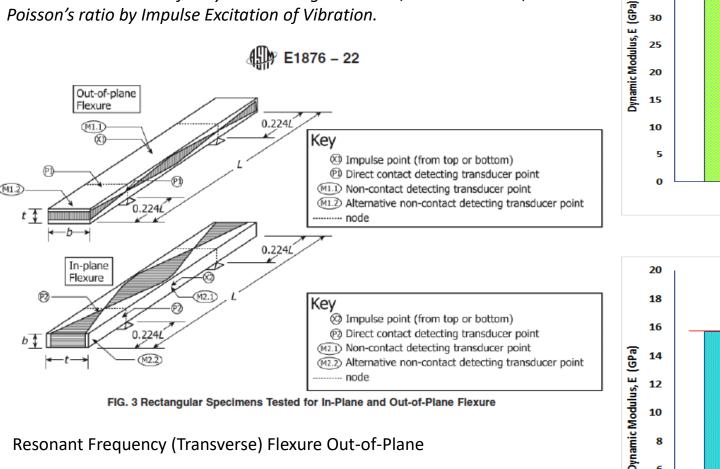
25

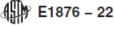
REF

REF+SAP DP

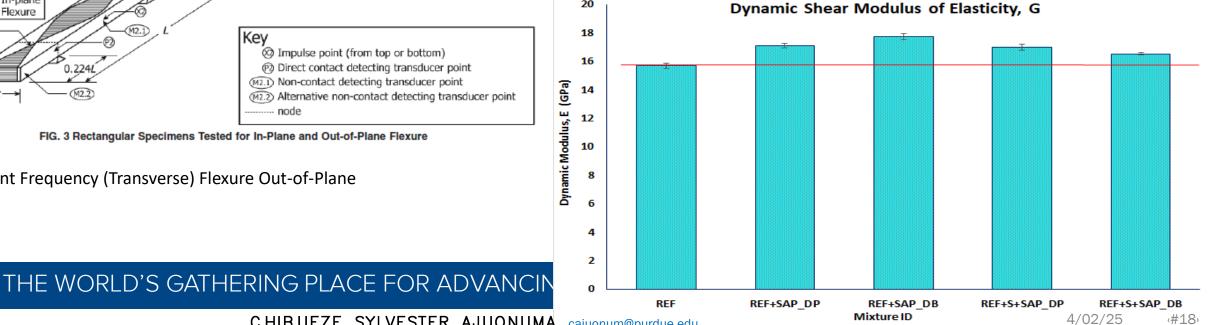
REF+S+SAP DP

Dynamic Modulus of Elasticity, E


REF+SAP DB


Mixture ID

REF+S+SAP DB


Dynamic Elastic Modulus, E (ASTM E1876-22)

Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's ratio by Impulse Excitation of Vibration.

Drying Shrinkage

FROM THE LABORATORY TO THE FIELD

(FIELD TRIALS)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

(#19)

Previous Research

Materials

Summary of CMDs (Slabs 6 - 11)

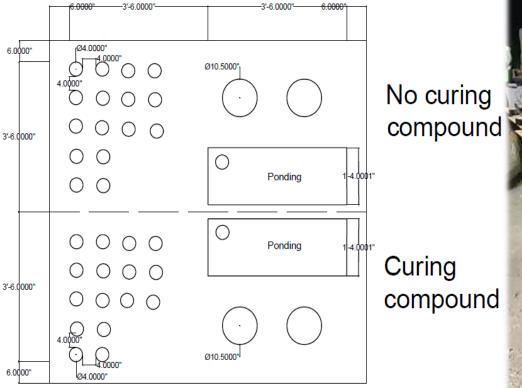
Target Slump (inches) 3 – 7

Target Air Content (%) 5 – 8

| Mix | Cement
(lb./cuyd) | Slag (by
weight of
cement) | w/cm | Nano
silica IC | SAP
(bags/cy) | FA/tot. agg | WRA (fl. oz/
100 lbs. of
cementitious) | AEA (fl. oz/
100 lbs. of
cementitious) |
|--|----------------------|----------------------------------|------|-------------------|------------------|-------------|--|--|
| Slab 6
(Reference) | 658 | | 0.44 | | | 0.41 | - | ~ 0.9 |
| Slab 7 (Ref +
Nano silica IC) | 658 | | 0.44 | 4 oz/cwt | | 0.41 | - | ~ 0.8 |
| Slab 8 (Ref +
Slag) | 461 | 197 | 0.44 | | | 0.41 | - | ~ 0.8 |
| Slab 9 (Ref +
Slag + Nano
silica IC) | 461 | 197 | 0.44 | 4 oz/cwt | | 0.41 | _ | ~ 0.8 |
| Slab 10 (Ref +
SAP) | 658 | | 0.44 | | 1 bag | 0.41 | - | ~ 0.8 |
| Slab 11 (Ref +
SAP+ Slag) | 461 | 197 | 0.44 | | 1 bag | 0.41 | _ | ~ 0.9 |

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Previous Research


Research Goals &

Materials

Concrete Mix

Experimental Overview

Materials

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

·#21[,]

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Placing plastic sheet over concrete

Previous Research

Application of curing compound

Experimental

Overview

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA <u>cajuonum@purdue.edu</u>

Research Goals &

SAP Delivery

Strategy

Introduction

Previous Research

Research Goals &

SAP Delivery Strategy

Experimental Overview

Materials

Application of curing compound

cylinders connected to Data logger

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

Cores from the slabs retrieved at age of 7, 28, 56, 90 and 365 days

(#26)

CURING REGIMES

SAP Delivery

Laboratory Curing

Previous Research

Specimens: Cast concrete cylinders and beams Conditions:

Constant temperature 23°C, Relative humidity ~ 50%, wet curing

Variables:

Curing compound (CC), without curing compound (NC), addition of colloidal nanosilica (NS1), and incorporation of SAP

Field Curing

Specimens: Field cast slabs, Concrete cores Conditions:

Variable temperature, moist environment, cyclic freezing and thawing

Variables:

Curing compound (CC), without curing compound (NC), addition of colloidal nanosilica (NS1), and incorporation of SAP

Previous Research

Research Goals & Objectives

Experimental Overview

Materials

Concrete Mix Design

Methods

| Test Name | Procedure | Specimen Specification | | | |
|---|-----------------------------------|--|--|--|--|
| Air Content and Workability | ASTM C143-20; C231-24 | Fresh concrete | | | |
| Compressive strength | ASTM C39-24 | 4 in. x 8 in. concrete cylinder/ cores | | | |
| Flexural strength | ASTM C78-22 | 6 in. x 6 in. x 18 in. concrete beams | | | |
| Splitting tensile strength | ASTM C496-17 | 4 in. x 8 in. cores | | | |
| Scaling resistance | ASTM C672-12 | 10 in. x 4 in. cylindrical specimens | | | |
| Resistivity and Formation factor | AASHTO T402-23 | 4 in. x 8 in. cores and cast cylinde | | | |
| Air Content Workability (Slump | b) Electrical Resistivity Testing | Compressive Strength Testing | | | |
| Image: With the second seco | | | | | |

Scaling Resistance

Depth of Chloride Water Absorption

Resistivity & Formation Factor

Specimens: 10 -in (260 mm) diameter x 4 -in (100 mm) height special cylinders.

Compressive Strength

Splitting Tensile

Strength

No. of Cycles: 50 cycles of freezing at thawing; freezing at -18 °C (0 °F) for 16 hours and thawing at 4 °C (40 °F) for 8 hours. The deicing solution was replaced at the end of every 5th cycle.

2 -in (50 mm) high dikes were created and 0.5 -in (2 cm) depth of CaCl2 deicing solution added to the concrete surface

Extraction of test specimen from the field

Power washing of test specimen

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Specimen for scaling resistance test

Diked specimen ponded with chloride solution

Compressive Strength

Splitting Tensile Strength

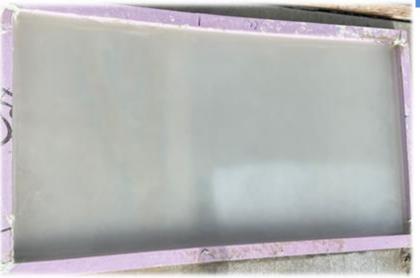
Scaling Resistance

Depth of Chloride Penetration

Water Absorption

Resistivity & Formation Factor

The chloride ion penetration test is a critical assessment method used to evaluate the durability of concrete, especially in environments exposed to de-icing salts, seawater, or industrial chemicals.


Creation of dikes on field-cast slabs

covering aikes to avoid evaporation

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

Field-cast slab ponded with chloride solution

Extraction of concrete cores from the field

Compressive Strength

Scaling Resistance

Vacuum-saturation of cores

Depth of Chloride Penetration

Water Absorption

Resistivity & Formation Factor

Cutting cores to dimension

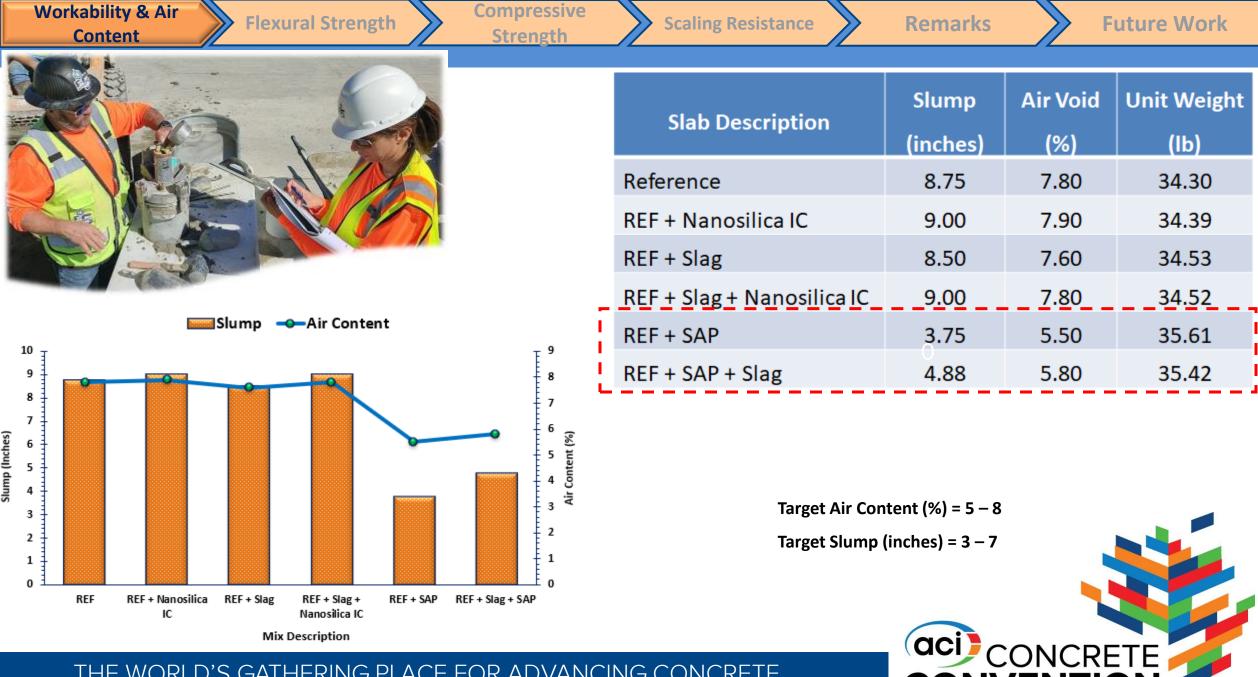
ASTM C1585-20:

Standard Test Method for Measurement of Rate of Water Absorption by Hydraulic Cement Concretes

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Cores drying in the environmental chamber

Evaluation of the rate of water absorption of test specimens


Outline

- **Research overview**
 - Introduction
 - Goal & Objectives
 - **Experimental Overview** н.
 - > Methodology
 - Materials .
 - Methods
 - **Concrete Mix Design** н.
 - Results and Discussions
 - Workability (Slump) and Air Content
 - Strength Characteristics (Flexural, Tensile and Compressive Strength)
 - **Scaling Resistance**
 - **Chloride ion penetration**
 - **Rate of Water Absorption**
 - **Resistivity and Formation factor**
 - \triangleright Summary

References

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

CONVENTIO

Workability & Air Content

Thermocouple Sensor Analysis

Remarks

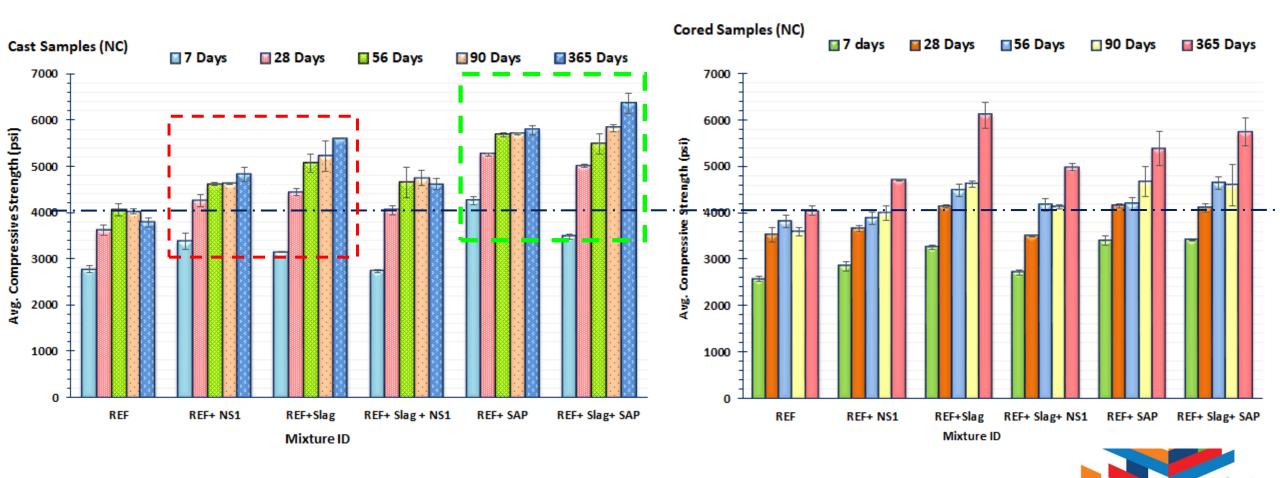
Future Work

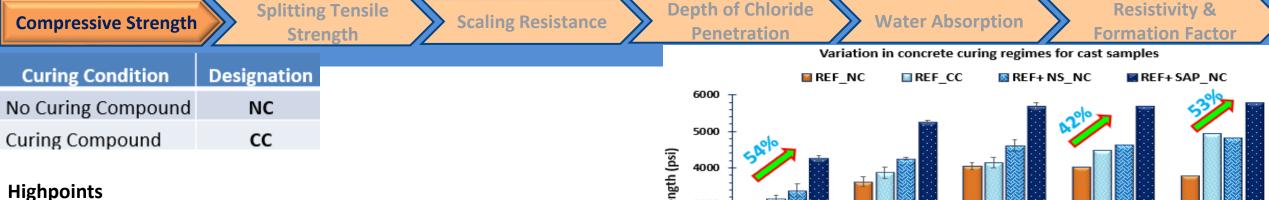
Air Content (%) = 7.80 Slump (inches) = 8.75 Air Content (%) = 5.50 Slump (inches) = 3.75 Air Content (%) = 5.80 Slump (inches) = 4.88

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

| Workability & Air
Content
Content
Content
Compressive
Strength | | ocouple
Analysis | Remarks | | Future Wo | rk |
|--|---|---------------------|--------------------------|------|----------------------|------|
| <u>Field Acceptance Properties:</u>
Minimum water/competitious ratio | | Slab No. | Description | w/b | Flexural S
at 4 D | - |
| Minimum water/cementitious ratio | | | | | psi | MPa |
| Slump, formed | | 6 | REF | 0.44 | 515.13 | 3.55 |
| Air Content | | 7 | REF+ Nanosilica IC | 0.44 | 524.96 | 3.62 |
| Relative Yield0.98 to 1.02 | | 8 | REF + Slag | 0.44 | 454.21 | 3.13 |
| ^A The target cement content during production shall not be
adjusted from the value stated on the CMDP. | | 9 | REF+ Slag+ Nanosilica IC | 0.44 | 4 <u>1</u> 1.79 | 2.84 |
| Flexural strength at 4 days, ~ 41 | - | 10 | REF+ SAP | 0.44 | 550.63 | 3.79 |
| ^B The water cementitious ratio during production shall not •
deviate more than 0.020 from the target stated in the
CMDP and shall not fall outside the limits above. Achieved the minimum specific
at 7 days by 3 days earlier. | ed stanuaru | 11 | REF+ SAP+ Slag | 0.44 | 530.33 | 3.65 |
| | | | | | | |
| ^C Beams shall be standard cured in a water tank in accordance with AASHTO T 23 and 505.01(a). The water does not need to be saturated with calcium hydroxide. Minimum flexural strength for opening to traffic shall be in accordance with 506.12. | 700 | | Flexural Strength at 4 | Days | -1-:-:- | |
| accordance with AASHTO T 23 and 505.01(a). The water does not need to be saturated with calcium hydroxide. | | · = · = · = | Flexural Strength at 4 | Days | _]_:_:= | |
| accordance with AASHTO T 23 and 505.01(a). The water
does not need to be saturated with calcium hydroxide.
Minimum flexural strength for opening to traffic shall be
in accordance with 506.12. | | | Flexural Strength at 4 | Days | _]_:_:_ | |
| accordance with AASHTO T 23 and 505.01(a). The water
does not need to be saturated with calcium hydroxide.
Minimum flexural strength for opening to traffic shall be
in accordance with 506.12.
Structural Concrete
• Minimum modulus of rupture at 7 days = 570 psi.
Concrete Patches | 600
 | | Flexural Strength at 4 | Days | | |
| accordance with AASHTO T 23 and 505.01(a). The water
does not need to be saturated with calcium hydroxide.
Minimum flexural strength for opening to traffic shall be
in accordance with 506.12.
Structural Concrete
• Minimum modulus of rupture at 7 days = 570 psi. | 600
005
007
007
007
007
007
007
0 | -I- | Flexural Strength at 4 | Days | _] | |
| accordance with AASHTO T 23 and 505.01(a). The water
does not need to be saturated with calcium hydroxide.
Minimum flexural strength for opening to traffic shall be
in accordance with 506.12.
Structural Concrete
• Minimum modulus of rupture at 7 days = 570 psi.
Concrete Patches | exural strength (psi) | -I- | Flexural Strength at 4 | Days | | |

INDOT. (2024). 2024 Standard Specifications. Retrieved from INDOT website

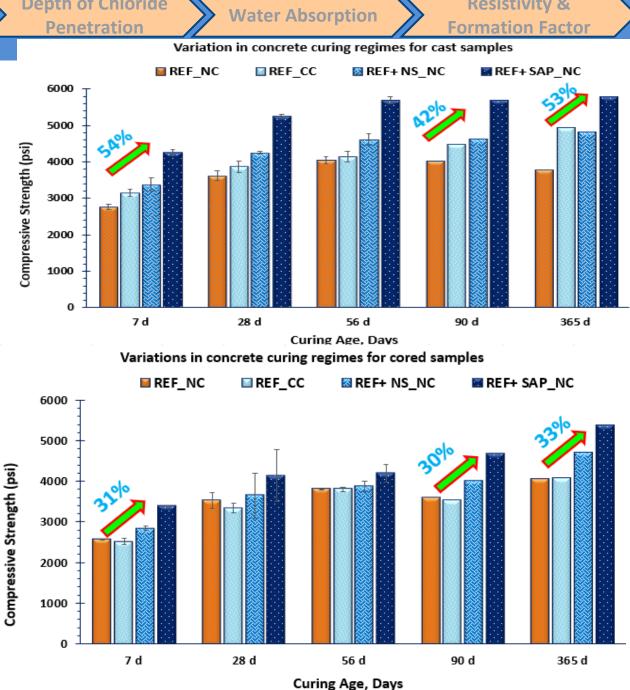

Mix Description


Compressive strength for cast samples with age

Compressive strength for cored samples with age

CONVENTIO

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE


Cast:

- The application of the curing compound improved the strength by 14%, 7%, 2%, 12% and 31% for the 7, 28, 56, 90 and 365 days respectively.
- Addition of SAP improved the strength by 54%, 45%, 40%, 42% and 53% for the 7, 28, 56, 90 and 365 days respectively.

Cores:

- The impact of curing compound application on compressive strength was negligible at all curing ages
- Addition of SAP improved the strength by 31%, 18%, 10%, 30% and 33% for the 7, 28, 56, 90 and 365 days respectively.
- The effect of NS on compressive strength was obvious at later ages (11% and 16% increment at 90 and 365 days)

THE WORLD'S GATHERING PLACE FOR ADVANCING

^{4/02/25 &#}x27; (#37)

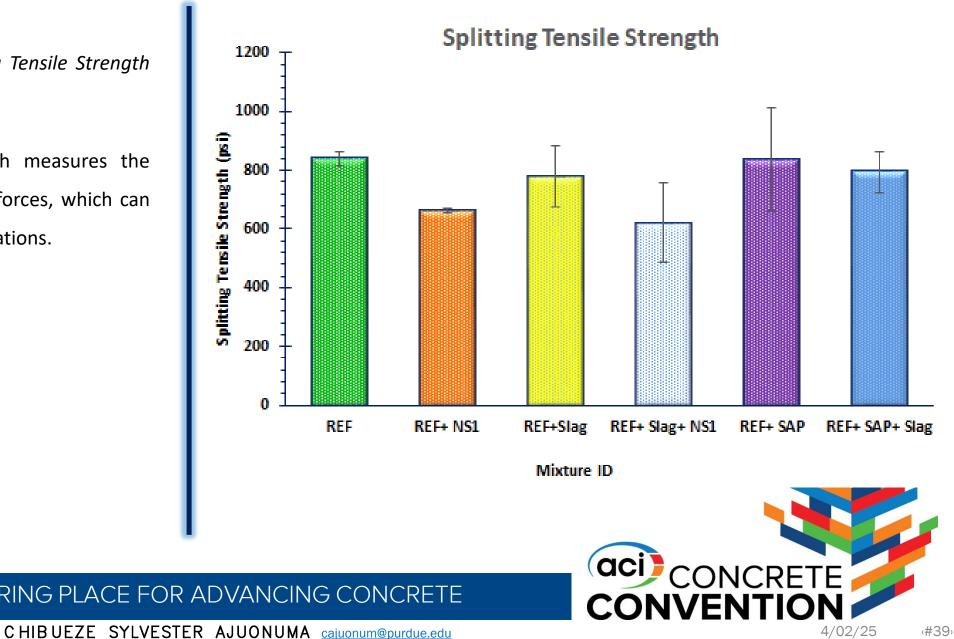
Compressive Strength

Splitting Tensile Scaling Resistance **Depth of Chloride Penetration**

Water Absorption

Resistivity & Formation Factor

ASTM C496 - 17


Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens

Strength

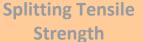
Concrete splitting tensile strength measures the material's ability to resist tension forces, which can be critical in many structural applications.

Test Specimens: Concrete cores

Age at testing: 180 days

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

| Workabilit
Conte | | Flexura | l Strength | > | Compressive
Strength | Thermocouple
Sensor Analysis | | Remarks | | Future Worl |
|---------------------|-------------------|--------------------------------|--|---|-------------------------|---------------------------------|---|---|-------------|-------------|
| Description | Peak Temp
(°C) | . Time to Peak
Temp. (Hrs.) | Air Temp. at
Peak (⁰ C) | _ | | REF_NC | | - REF+NS_NC • REF+SAP+Slag_NC | REF+Slag_NC | REF+SI |
| REF | 43.59 | 8.30 | 28.56 | - | | 70 | | | | |
| REF + NS | 38.58 | 8.30 | 28.56 | | | 60 | | | | |
| REF + Slag | 37.86 | 10.30 | 13.35 | | | 1 | | | | |
| REF + Slag + NS | 33.14 | 9.30 | 14.42 | | | , ⁵⁰ | | | | |
| REF + SAP | 36.45 | 6.00 | 17.64 | | | (°C) | | (in the second | | |
| REF + SAP + Slag | 35.69 | 7.00 | 14.42 | | | ý ⁴⁰ | / | ! | | cattre |


Highpoints

- \triangleright Addition of nanosilica, **decreased** the slab core temperatures by 13%, but the time to reach peak temperature remained unchanged.
- Replacement of cement with 30% slag decreased the slab core temperature by 13%, but it **extended** the time to reach peak temperature by 2 hrs. (~10 hrs.)
- Addition of SAP decreased the slab core temperature by 16%, and decreased the time required to attain peak temperature by 2 hrs. (~6 hrs.).

ag+NS NC Temperatur 50 50 10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 Elapsed Time, (Days) REF NC **REF+NS NC** ---- REF+Slag NC REF+Slag+NS NC **REF+SAP NC** REF+SAP+Slag_NC — Air Temp. 70 60 ູ່ ເ 50 Temperature, 40 30 20 10 THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE 3 4 5 6 7 8 9 10 Elapsed Time, (Days) 4/02/25 (#40)

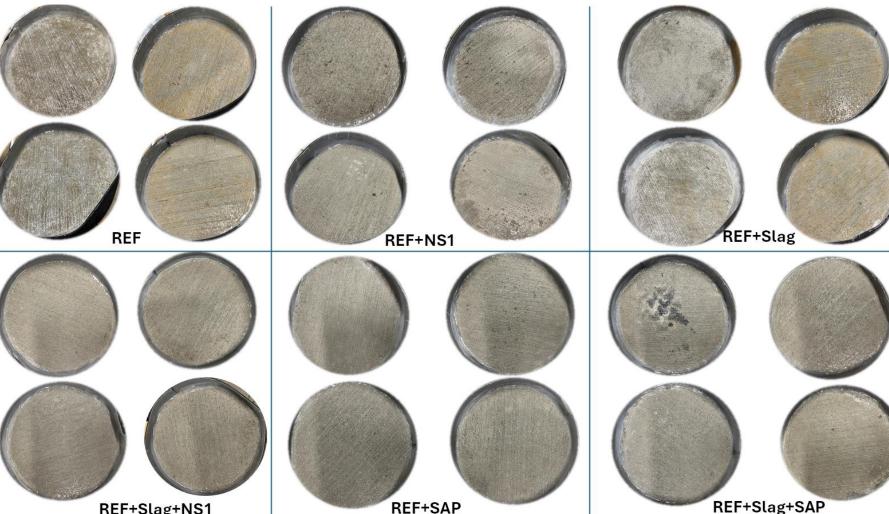
rks

Compressive Strength

Scaling Resistance

Depth of Chloride Penetration

Water Absorption

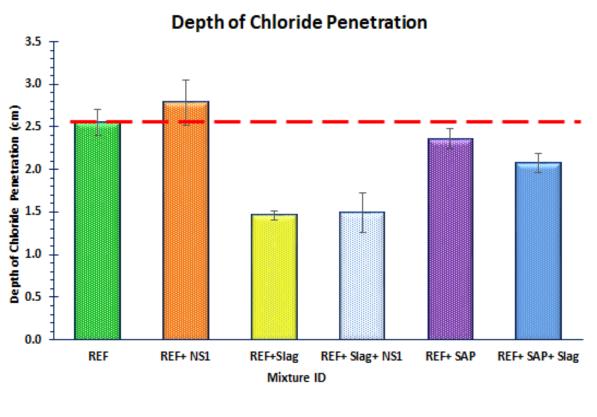

Resistivity & Formation Factor

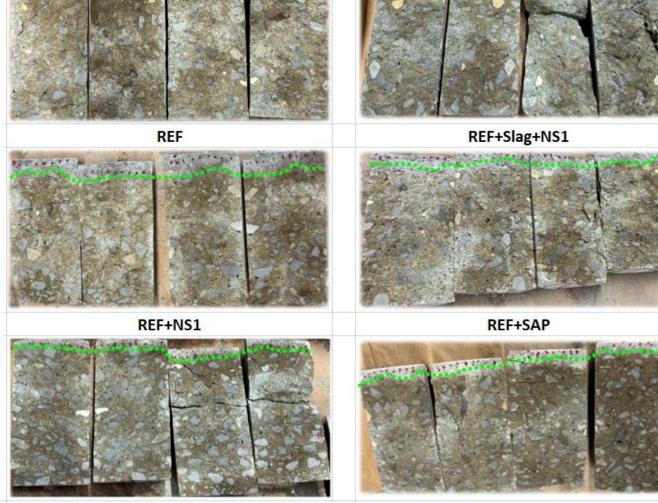
ASTM C672 – Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals

The surface scaling visual rating scale recommended in the standard was used to evaluate the extent of scaling.

- None of the specimens tested showed any signs of scaling.
- No mass loss was recorded. •
- Visual rating of all surfaces was **zero**. ٠

REF+Slag+NS1

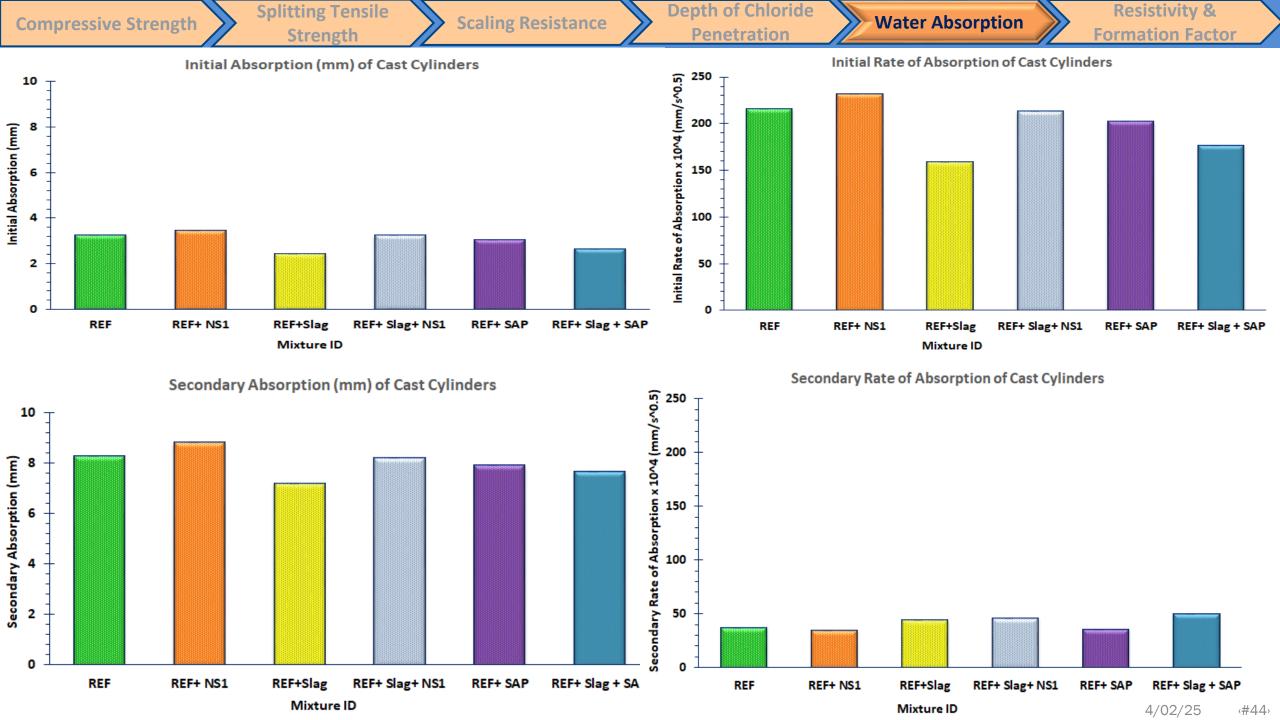

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE



Depth of Chloride Penetration

Water Absorption

Resistivity & Formation Factor



The chloride ion penetration test is a critical assessment method used to evaluate the durability of concrete, especially in environments exposed to de-icing salts, seawater, or industrial chemicals.

REF+Slag

REF+Slag+SAP

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Compressive Strength

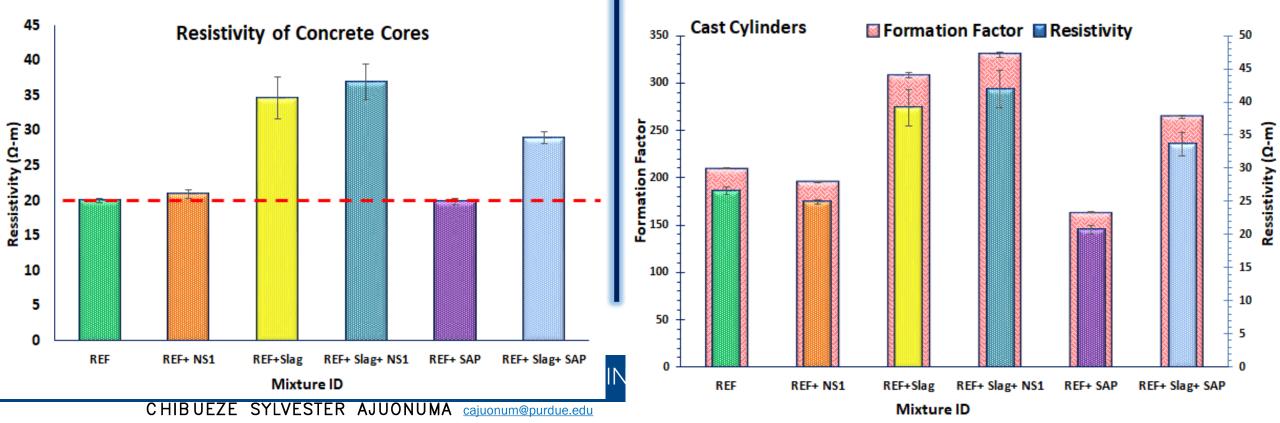
Splitting Tensile Strength

Scaling Resistance

Depth of Chloride Penetration Water Absorption Resistivity & Formation Factor

AASHTOT402-23ElectricalResistivityofaConcreteCylinderTested in Uniaxial Resistance Test.

The values of the resistivity and formation factor were determined following the test procedure outlined above.


The formation factor (F), which represents the ratio of the concrete resistivity to

the **resistivity of the pore solution** was calculate using equation below.

$$F = \frac{\rho}{\rho_0} = \frac{1}{\varphi.\beta}$$

Where: F = Formation factor, $\rho = Concrete resistivity$, $\rho_0 =$

Pore solution resistivity, φ = Concrete porosity, β = Concrete pore connectivity

In summary, having performed the field trials on the practical implementation of superabsorbent polymers for internally cured concrete, the following remarks have been drawn:

Resistivity &

Formation Facto

Remarks

Chloride

Penetration

Scaling Resistance

Strength Properties

- The use of dissolvable bags was an effective approach for the SAP delivery in the field, achieving appropriate dispersion and mixture consistency.
- Mixtures containing SAP showed improved early-age flexural strength performance compared to SAP-free mixtures. The addition of SAP also counteracted the early-age strength reduction caused using slag.
- When compared with using a surface-applied curing compound, the addition of SAP significantly improved the compressive strength of field cast and cored samples (by more than 30-50%) across all ages compared to SAP-free plain cement reference mixtures with and without curing compound.
- Mixtures containing both slag and SAP displayed reduced chloride penetration depths compared to reference and SAP-only mixes. The combination of SAP and slag appeared to provide a synergistic effect, together reducing permeability and enhancing resistance to chloride penetration.
- Concrete mixtures containing slag showed higher resistivity and lower volume of interconnected pores, decreased ionic mobility, lower chloride ion permeability and improved durability.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA <u>cajuonum@purdue.edu</u>

(#46)

Acknowledgment

Thank You

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

×#47

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Acknowledgment

Chibueze Ajuonuma (Presenter)

Lyles School of Civil Engineering cajuonum@purdue.edu

Kendra Erk, PhD.

School of Materials Engineering erk@purdue.edu

Jan Olek, PhD., PE

James H. and Carol H. Cure Professor of Civil Engineering and Director of the North Central Superpave Center (NCSC) Lyles School of Civil Engineering olek@purdue.edu

Mike Nelson, INDOT Materials Management

Tommy Nantung, INDOT Research and Development

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CHIBUEZE SYLVESTER AJUONUMA cajuonum@purdue.edu

Lyles School of Civil Engineering

