

Probabilistic Service Life Analysis Using Reactive Transport Degradation Modeling

Richard Cantin – SIMCO Technologies Inc.

ACI Spring Convention 2025 - Toronto, ON

Presentation Summary

- Structure
- Model
- Variables
- Cases
- Results Impact of variables
- Results Probabilistic vs deterministic

Structure and Conditions

- Marine structure
- 75 years
- Pile Tidal conditions
- Cap Splash zone
- Deck Atmospheric
- 35 ppt salinity
- 25C±3 Celsius
- RH from 70% to 100%

Model

- STADIUM finite-element model
- Probabilistic version
- Average gives deterministic
- Both carried out simultaneously

Probabilistic Variables

- Transport properties
- Diffusion coefficient
- Volume of permeable voids

Cases

- Standard concrete with 0.40 W/B, 25% FA-F
- Variability of transport properties:

VPV: 5%

Diff. coefficient: 8%, 15%

Permeability: 10%, 20%

- Variability of salinity: 10%, 20%
- Cover: normal with 75 mm (pile and cap) and 50 mm (cap and deck)
- Threshold: *fib Bulletin 34* Beta 0.6%, 0.2%, 2.0%

Threshold - Probabilistic

Cover Distribution

- Tolerance of 13 mm for piles and cap
- Tolerance of 10 mm for deck
- Distribution within tolerance (criterion: 10⁻⁵ probability at tolerance)

Cases – Summary

Case	Element	Exposure	Concrete	VPV	DOH	Perm	Salinity	Cover	Threshold
1	Pile	Tidal	0.40-25 FA	5	8	10	10	75	0.6
2	Pile	Tidal	0.40-25 FA	5	15	10	10	75	0.6
3	Pile	Tidal	0.40-25 FA	5	8	20	10	75	0.6
4	Pile	Tidal	0.40-25 FA	5	15	20	10	75	0.6
5	Pile	Tidal	0.40-25 FA	5	8	10	20	75	0.6
6	Pile	Tidal	0.40-25 FA	5	15	10	20	75	0.6
7	Pile	Tidal	0.40-25 FA	5	8	20	20	75	0.6
8	Pile	Tidal	0.40-25 FA	5	15	20	20	75	0.6
9	Cap	Splash	0.40-25 FA	5	8	10	10	75	0.6
10	Cap	Splash	0.40-25 FA	5	15	10	10	75	0.6
11	Cap	Splash	0.40-25 FA	5	8	20	10	75	0.6
12	Cap	Splash	0.40-25 FA	5	15	20	10	75	0.6
13	Cap	Splash	0.40-25 FA	5	8	10	20	75	0.6
14	Cap	Splash	0.40-25 FA	5	15	10	20	75	0.6
15	Cap	Splash	0.40-25 FA	5	8	20	20	75	0.6
16	Cap	Splash	0.40-25 FA	5	15	20	20	75	0.6
17	Deck	Atmospheric	0.40-25 FA	5	8	10	10	50	0.6
18	Deck	Atmospheric	0.40-25 FA	5	15	10	10	50	0.6
19	Deck	Atmospheric	0.40-25 FA	5	8	20	10	50	0.6
20	Deck	Atmospheric	0.40-25 FA	5	15	20	10	50	0.6
21	Deck	Atmospheric	0.40-25 FA	5	8	10	20	50	0.6
22	Deck	Atmospheric	0.40-25 FA	5	15	10	20	50	0.6
23	Deck	Atmospheric	0.40-25 FA	5	8	20	20	50	0.6
24	Deck	Atmospheric	0.40-25 FA	5	15	20	20	50	0.6

Results – Probability vs RI

Centered standard normal

Cumulative probability

American Concrete Institute

Results - Pile

Case	VPV	DOH	Perm	Salinity
1	5	8	10	10
2	5	15	10	10
3	5	8	20	10
4	5	15	20	10
5	5	8	10	20
6	5	15	10	20
7	5	8	20	20
8	5	15	20	20

- 1 & 3 overlap
- 2 & 4 overlap
- 5 & 7 overlap
- 6 & 8 overlap

Results – Cap 75 mm

Case	VPV	DOH	Perm	Salinity
9	5	8	10	10
10	5	15	10	10
11	5	8	20	10
12	5	15	20	10
13	5	8	10	20
14	5	15	10	20
15	5	8	20	20
16	5	15	20	20

- 0%
- 75 mm of cover is high enough
- Could be reduced

Results – Cap 75 mm

Case	VPV	DOH	Perm	Salinity
9	5	8	10	10
10	5	15	10	10
11	5	8	20	10
12	5	15	20	10
13	5	8	10	20
14	5	15	10	20
15	5	8	20	20
16	5	15	20	20

 RI curves do show some differences although probability is near 0%

Results – Cap 50 mm

Case	VPV	DOH	Perm	Salinity
9	5	8	10	10
10	5	15	10	10
11	5	8	20	10
12	5	15	20	10
13	5	8	10	20
14	5	15	10	20
15	5	8	20	20
16	5	15	20	20

- 50 mm of cover is also enough
- Corrosion probability< 10%
- Higher for 14 16

Results - Deck

Case	VPV	DOH	Perm	Salinity
17	5	8	10	10
18	5	15	10	10
19	5	8	20	10
20	5	15	20	10
21	5	8	10	20
22	5	15	10	20
23	5	8	20	20
24	5	15	20	20

- 0% probability
- 50 mm of cover is enough
- Could be reduced

Results - Deck

Case	VPV	DOH	Perm	Salinity
17	5	8	10	10
18	5	15	10	10
19	5	8	20	10
20	5	15	20	10
21	5	8	10	20
22	5	15	10	20
23	5	8	20	20
24	5	15	20	20

 RI curves do show some differences although probability is near 0%

Results - Deterministic

- Average values
- Lower threshold
- Threshold = 0.3%

Results

- Comparable service life for the different calculations
- 50 mm is sufficient for the cap and deck
- For the piles, cover should be increased

	Probabilistic	Deterministic	
Piles	44-49	41	
Cap	>75	>75	
Deck	>75	>75	

Conclusions

- The calculations allow to determine the required cover in each case
- Accounting for uncertainty of the probabilistic parameters does not affect significantly the calculation results
- Probabilistic and deterministic calculations can yield similar results depending on corrosion initiation threshold
- Selection of calculation parameters values has a greater influence than their variability
- Key point = importance of determining the right parameters

