

Additive Construction of Low Embodied Carbon Concrete: Geopolymer Concrete

Aly Ahmed¹ and Islam M. Mantawy² ¹Graduate Research Assistant ²Assistant Professor

Presenter: **Anthony Mackin** Toronto, ON, Canada, April 2025

- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.
- Additive Construction of Geopolymer Concrete Processes.
 - Preparing Geopolymer concrete material.
 - Introduction to additive construction.
 - Preparing the desired 3D-printed shape for printing.
 - Printing the desired shape.
 - Showcases for successful printing processes.
- Observation and Results
 - Activator Temperature effect.
 - Printing time.
 - Mechanical properties.
- Conclusion.

- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.
- Additive Construction of Geopolymer Concrete Processes.
 - Preparing Geopolymer concrete material.
 - Introduction to additive construction.
 - Preparing the desired 3D-printed shape for printing.
 - Printing the desired shape.
 - Showcases for successful printing processes.
- Observation and Results
 - Activator Temperature effect.
 - Printing time.
 - Mechanical properties.
- Conclusion.

Construction industry over the last decades

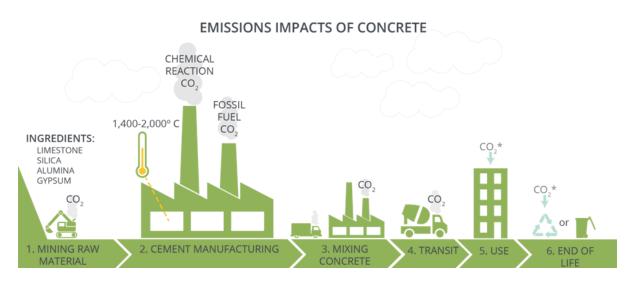
Comparison of construction techniques between 1950s (left) and 21st century (right).

CEMENT AND CONCRETE BY THE NUMBERS

~30 billion metric tons:

Amount of concrete manufactured globally annually.

~8%:

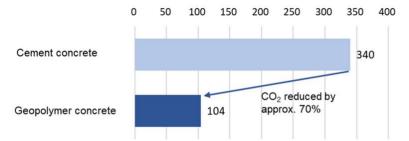

Portion of global anthropogenic CO2 attributed to cement manufacturing.

1,450 ° - 1550 ° C: Temperature of kilns used to process cement.

25–50%: Projected global increase in demand for concrete by 2050

Source: International Energy Agency; Nat. Mater. 2017, DOI: 10.1038/nmat4930.

To reduce the Concrete's Carbon Footprint:



To reduce the Concrete's Carbon Footprint:

Geopolymer Concrete

Comparison of CO₂ emission estimates for cement concrete and geopolymer concrete

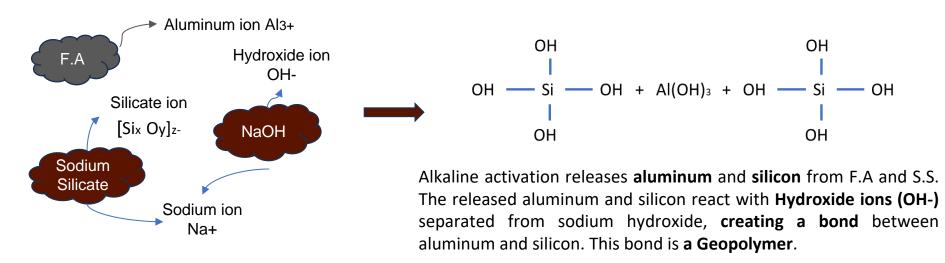
Source: Compiled by MGSSI based on Nishimatsu Construction Technical Report VOL 39, "Properties and construction case of geopolymer" [in Japanese]

Decreasing Carbon Emission Increasing Carbon Sequestration

RowanUniversity ADDITIVE AND ROBOTIC CONSTRUCTION LABORATORY (ARC-LAB)

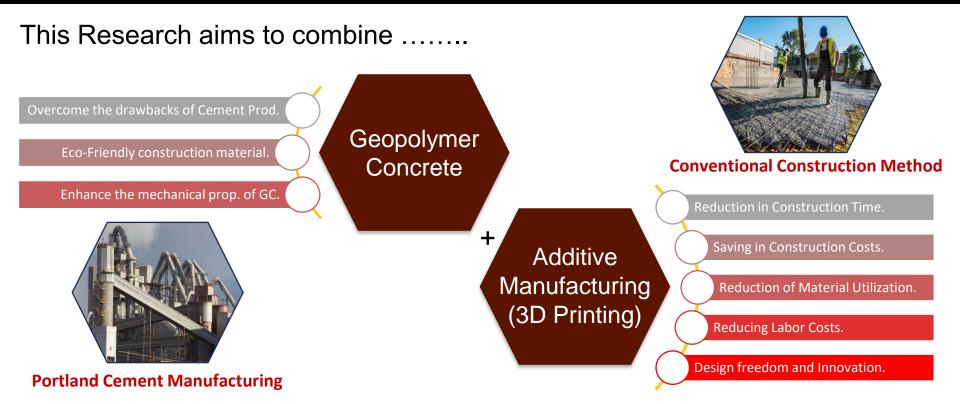
- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.
- Additive Construction of Geopolymer Concrete Processes.
 - Preparing Geopolymer concrete material.
 - Introduction to additive construction.
 - Preparing the desired 3D-printed shape for printing.
 - Printing the desired shape.
 - Showcases for successful printing processes.
- Observation and Results
 - Activator Temperature effect.
 - Printing time.
 - Mechanical properties.
- Conclusion.

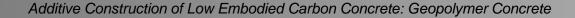
Geopolymer Concrete



RowanUniversity

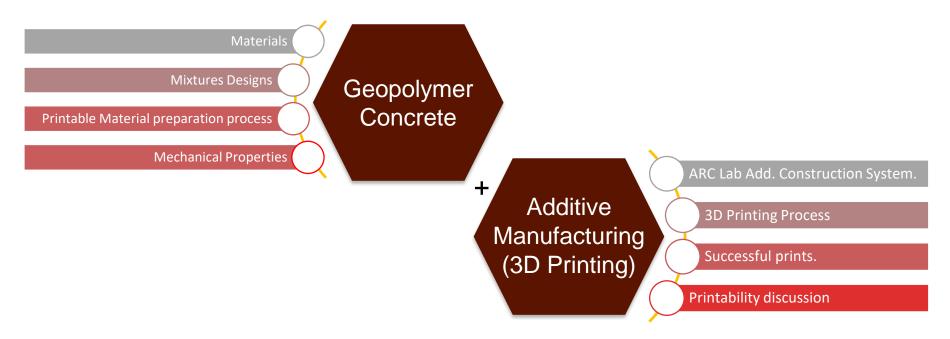
LABORATORY (ARC-LAB)


What is Geopolymer Concrete?


Cementless Concrete, formed by **alkali activation** of industrial aluminosilicate **waste materials** "Fly ash (FA), Ground granulated blast furnace slag (GGBS), and Silica Fume (SF)".

3D Printing + Geopolymer Concrete

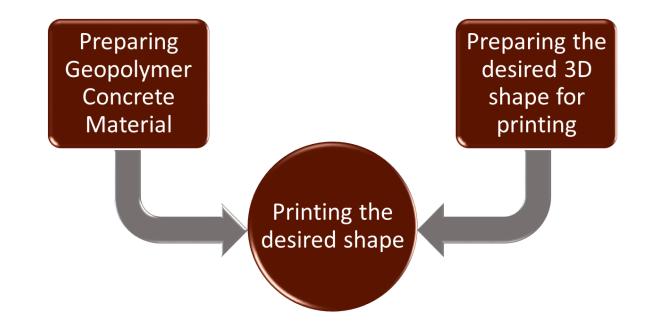
American Concrete Institute



3D Printing + Geopolymer Concrete

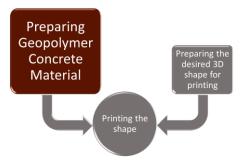
Outline of the research....

- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.


Additive Construction of Geopolymer Concrete Processes.

- Preparing Geopolymer concrete material.
- Introduction to additive construction.
- Preparing the desired 3D-printed shape for printing.
- Printing the desired shape.
- Showcases for successful printing processes.
- Observation and Results
 - Activator Temperature effect.
 - Printing time.
 - Mechanical properties.
- Conclusion.

American Concrete Institute

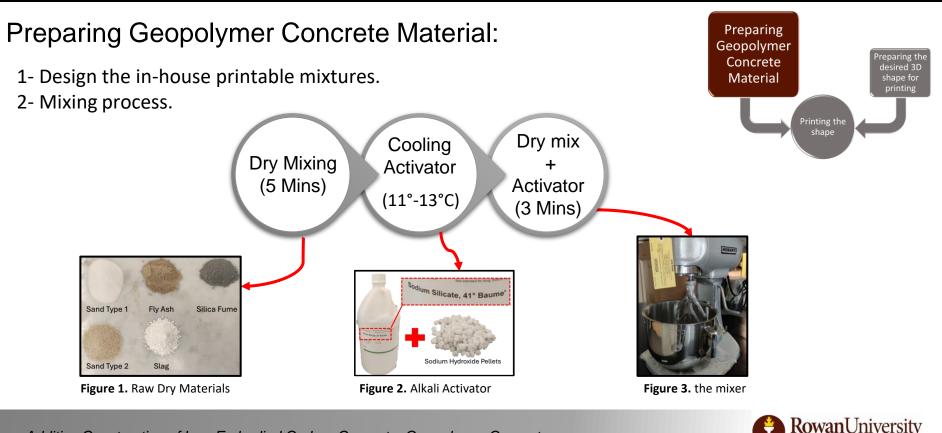


American Concrete Institute

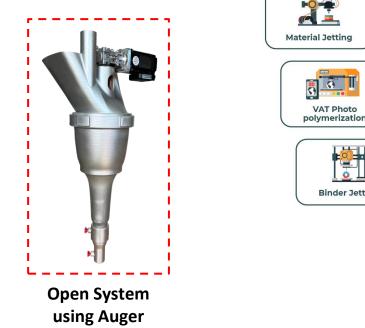
Preparing Geopolymer Concrete Material:

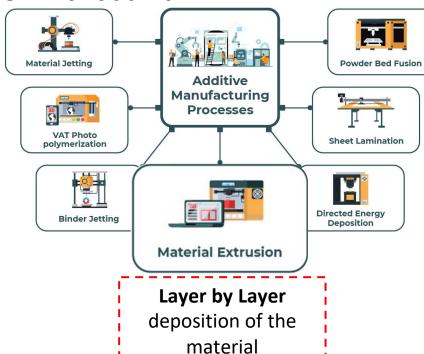
1- Design the in-house printable mixtures.

	Mix	M1	M2	M3	M4	M5
% of Total weight of Binder	Slag	0 %	20 %	30 %	40 %	50 %
	Fly Ash (C)	80 %	70 %	60 %	50 %	40 %
	Silica Fume	20 %	10 %	10 %	10 %	10 %
Aggregates	Sand (Type 1)	Aggregates to binder ratio is 2:1 , consists of different particle sizes with ratios of				
	Sand (Type 2)	50%, and 50% by weight				
alkaline activator	NaOH	The alkaline activator has a modulus (MS) of				
	Sodium Silicate	0.80 (where MS = SiO2 / Na2O, Na2O = 13 %)				
Water	H2O	W:B ratio is 0.45				



American Concrete Institute


ADDITIVE AND ROBOTIC CONSTRUCTION


LABORATORY (ARC-LAB)

According to ISO / ASTM 52900:2021

Closed System using Tube

Intorduction to Additive Construction

The ARC Lab at Rowan University hosts an additive construction systems including: **The Scara Elite Roadrunner 3D printer**.

Open System using Auger

RADA (X ALXIE) TELAVEL CUUDADA TA TUVE BAD					
	SCARA ROADRUNNER Printing specifications				
	Length	20 ft			
	Width	14 ft			
	Height	7 ft			
	Prints 1"- 4" per second.				
	Prints 360° with continuous rotation				

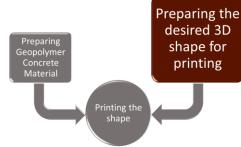
Closed System using Tube

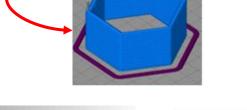
American Concrete Institute

Slicing

SIMPLIFY3D

Preparing the desired 3D shape for printing:


- 1-3D shapes were designed and modelled in CAD software.
- 2-3D models were sliced for printing using slicing software.


3D

Modeling

3- Exporting the G-Code file to the printer.

onshape

Export

G-Code

file

Printing the desired shape:

1- The Geopolymer Concrete materials were manually loaded into a closed printing tube system.

2- The closed printing tube system employs a plunger and motor to extrude concrete mixtures through various nozzle sizes ranging from 1 to 8 millimeters.

3- The printing path and process parameters were **remotely controlled** for printing **Layer-by-Layer**.

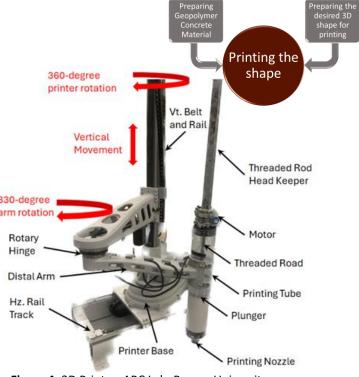
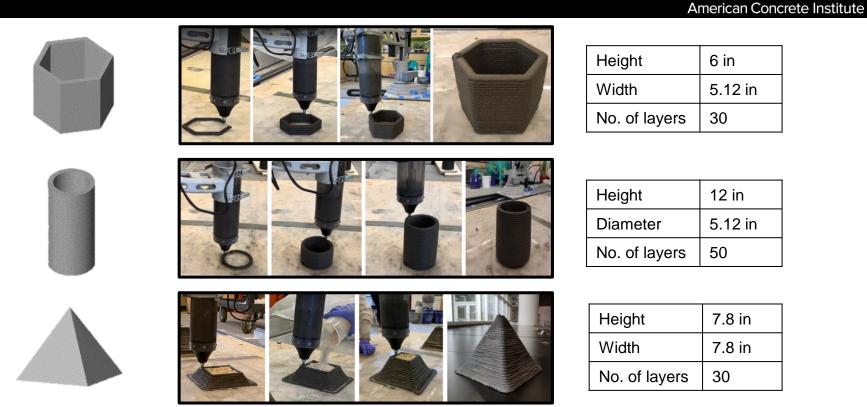


Figure 4. 3D Printer, ARC Lab, Rowan University.



American Concrete Institute

Showcases for Successful Printing Processes

Successful Extrusion and Buildability (Geopolymer Concrete)

Showcases for Successful Printing Processes

Height	10 in
Diameter	3 to 6 in
No. of layers	42

Successful Extrusion and Buildability (Geopolymer Concrete)

American Concrete Institute

- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.
- Additive Construction of Geopolymer Concrete Processes.
 - Preparing Geopolymer concrete material.
 - Introduction to additive construction.
 - Preparing the desired 3D-printed shape for printing.
 - Printing the desired shape.
 - Showcases for successful printing processes.

Observation and Results

- Activator Temperature effect.
- Printing time.
- Mechanical properties.
- Conclusion.

Observation and Results

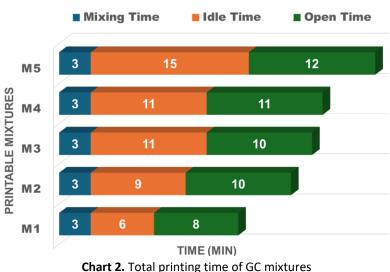
Activator Temperature effect:

- 1. The main challenge is to **control the setting time** and extend the open time of the material.
- 2. The main observation was that **the temperature of the activator liquid controls the setting time** of the Geopolymer concrete.
- 3. The temperature of the alkaline activator reaches 85° c at the same moment of fully dissolving the NaOH pellets in the Sodium silicate solution, 22° c after cooling down for (3-4 hours) in a room temperature, and temperatures range of (18° to 7° c) after cooling down in an appropriate refrigerator.
- 4. The temperature of **(11° to 13° c)** gives the best printability properties.

90 5,80 80 70 60 Temperature (Celsius) 50 40 30 14, 22 -16, 15 20, 12 22, 11 26, 9 20 10 0 n 5 10 15 20 30 25

Chart 1. Temperature – Setting time Curve.

Printing Time (min)



Additive Construction of Low Embodied Carbon Concrete: Geopolymer Concrete

Observation and Results

Printing time:

- 1. Geopolymer Concrete mixtures require a **specific idle time before initiating the 3D printing process** to achieve optimal texture and flowability for consistent printing.
- 2. The slag percentage is **directly proportional** to both idle time and open time in the mixtures.
- Increasing the percentage of Slag to 50 %, increase the idle time from 6 to 15 mins and the open time from 8 to 12 mins.
- 4. This effect results from **different geo-polymerization reaction rates** in Fly Ash-based and slag-replaced GC.

Observation and Results

Mechanical properties:

- 1. Geopolymer concrete mixtures achieved compressive strengths ranging from **3.5 to 5.5 ksi.**
- 2. Compressive strength values **improved with increasing the percentages of slag** replacing the total binder weight in printable Fly Ash-based GC.
- 3. The Geopolymer concrete's compressive strength increased by **175% when 50% of the binder weight was replaced by slag**, compared to the mixture without slag.

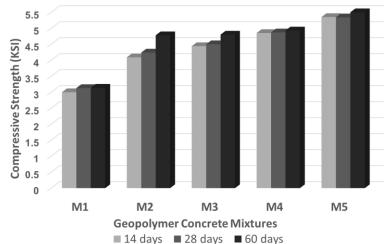
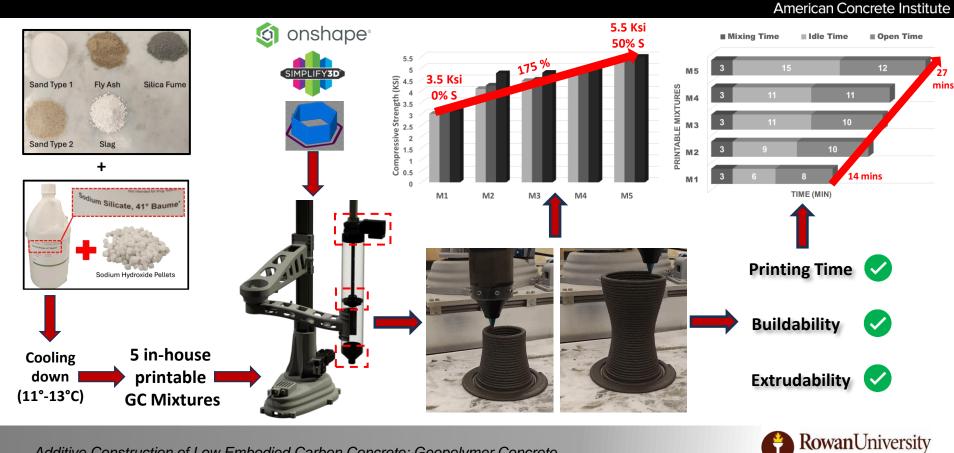


Chart 3. Compressive Strength Results.

American Concrete Institute

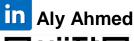
- Problem statement.
- Introduction
 - What's Geopolymer concrete?
 - 3D Printing + Geopolymer concrete.
- Additive Construction of Geopolymer Concrete Processes.
 - Preparing Geopolymer concrete material.
 - Introduction to additive construction.
 - Preparing the desired 3D-printed shape for printing.
 - Printing the desired shape.
 - Showcases for successful printing processes.
- Observation and Results
 - Activator Temperature effect.
 - Printing time.
 - Mechanical properties.
- Conclusion.



Conclusion

ADDITIVE AND ROBOTIC CONSTRUCTION

LABORATORY (ARC-LAB)



ARC Lab Team, Rowan University.

Thank you.

Toronto, ON, Canada, April 2025

