Developing Eco-friendly Concrete with Sustainable Supply: The Potential of Using Whole Recycled Gypsum Drywall

> Alireza Jafari Ph.D. Candidate in Civil Engineering

> > Supervisor: Dr. Pedram Sadeghian

April 2025

Outlines

- Introduction
 - Why replace cement?
 - Why new supplementary cementitious materials (SCMs)?
 - Why recycled gypsum drywall?
 - Why reuse whole recycled gypsum drywall?
- Objectives
- Test matrix
- Tests
- Results
 - Feasibility of whole RGD
- Conclusions
- In progress research
 - Short-term properties
 - Long-term properties (In progress)

Introduction: Why replace cement?

- Cement vs environment
 - Resource depletion;

DALHOUSIE UNIVERSITY

- Strain on the planet;
- Emitting carbon dioxide in production, storage, transportation, and reaction phases;
- Contributing to 8% of annual carbon dioxide emissions [1];
- Increasing the rate of global climate change.
- Still the primary binder of concrete with over 4 Billion tons supply per year (emitting 3.28 billion tons of carbon dioxide emissions) [2].
- Solution: Replacing ordinary Portland cement with eco-friendly alternatives (Supplementary cementitious materials)

Introduction: Why new supplementary cementitious materials (SCMs)?

- Limited supply of SCMs compared to what required to replace ordinary Portland cement;
- New environmental regulations that restrict the source of current SCMs;
- Reducing the portion of ordinary Portland cement in cementitious composites and thereby their carbon dioxide emissions;
- Offer a sustainable waste management practice for potential materials;
- Using their features to improve strengthening reactions.

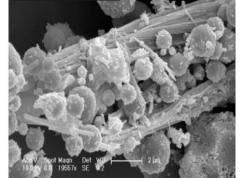
DALHOUSIE

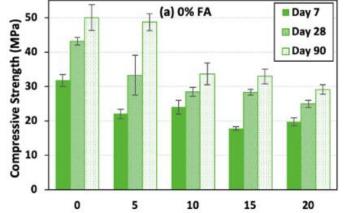
Introduction: Why recycled gypsum drywall?

- Abundancy (20% of CDW) [3];
- Environmental benefits of recycling:
 - Prevent landfilling:

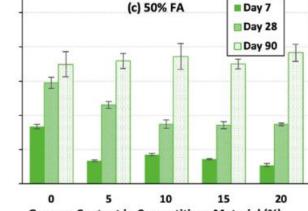
DALHOUSIE UNIVERSITY

- No toxic gas [4];
- No water and soil contamination [4].
- Offer waste management practice.
- Circular economy;
- Close-recycling loop [5];
- Reactivity and strength improvement [6];





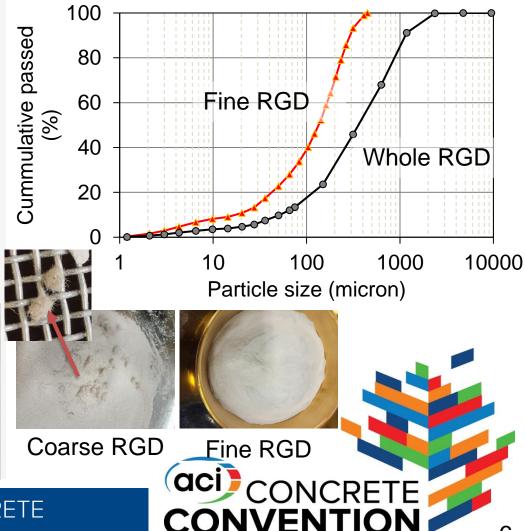
• Activating fly ash and slag [7-9];


DALHOUSIE UNIVERSITY

- Reducing the cumulative hydration heat (by up to 73%) [10];
- Producing dense Ettringite crystals (Changing from thin needle to thick needle, frame structure) [11];
- Improving some of the durability characteristics (alkali-silica reactions) [12];
- Increase porosity [13]

Gypsum Content in Cementitious Material (%)

Gypsum Content in Cementitious Material (%)


Introduction: Why reuse whole recycled gypsum

drvwall?

- Only 30-45 wt% of RGD passed sieve #50 (300 micron) [14];
- Returning 70-55 wt% of RGD to landfills;
- Potential of using whole RGD in concrete
 - Coarse RGD can be used as an SCM or fine aggregates.

Primary focus:

- Assessing the potential of whole RGD as a binder (cement or fly ash alternative) in high-volume fly ash concrete (comparison with fine RGD).
- Examining the short-term and long-term performance of concrete containing whole RGD, given the potential internal sulfate attack (In progress).

Objectives

- Evaluating the feasibility of using whole RGD instead of fine RGD as an SCM in concrete:
 - Mechanical strength;
 - Ultrasonic pulse velocity;
 - Microstructure;
 - Bulk density.

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONVENTION

Test matrix

Binder composition

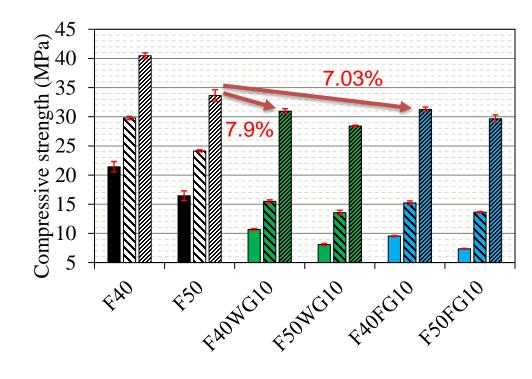
Binder properties

		_			A SELECTION AND A SECTION		-	-				
Mix design	Binder composition (%)				A DE ASTRON	Characte	Binder		der			
	Ordinary		Fine	Whole	A DECEMBER OF	Characteristics (%)		Fly ash	RGD			
	Portland cement	Fly ash	RGD	RGD	Well Column States States		Ca	1.92	22.25			
							Si	22.57	2.38			
F40	60	40	0	0		Chemical compositions (%)	AI	10.95	0.38			
F50	50	50	0	0	mach may 2 10 m m WD → 50 μm →		Fe	9.06	0.25			
F30	50	50	0	0	RGD		K	1.47	0.13			
F40WG10	50	40	0	10			Mg	0.92	0.38			
	10		•	1.0			Na	0.86	0.04			
F50WG10	40	50	0	10			S	0.12	17.71			
F40FG10	50	40	10	0		Physical	Uniformity	1.342	0.887			
	00	10		Ũ		properties	Specific	1409	1137			
F50FG10	40	50	10	0			surface area					
Total of 36 co	ncrete cylinders						(m²/kg)					
					- Fly ash							
F: Fly ash												
FG: Fine RGD (particles less than 300 microns)												
WG: whole RGD												
						aci)		стс				
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE												
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE												
									U			

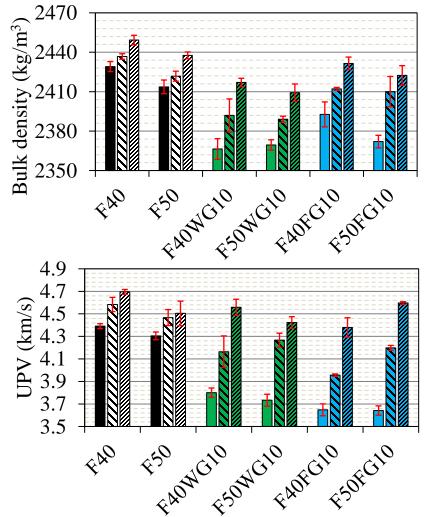
Tests

- Bulk density;
- Ultrasonic pulse velocity;
- Compressive strength;
- Microstructure.

Testing at 7, 28, and 90 days with moist curing.

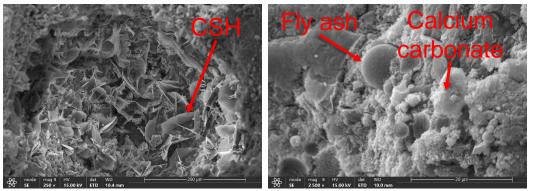


Results: Feasibility of whole RGD (Compressive strength)

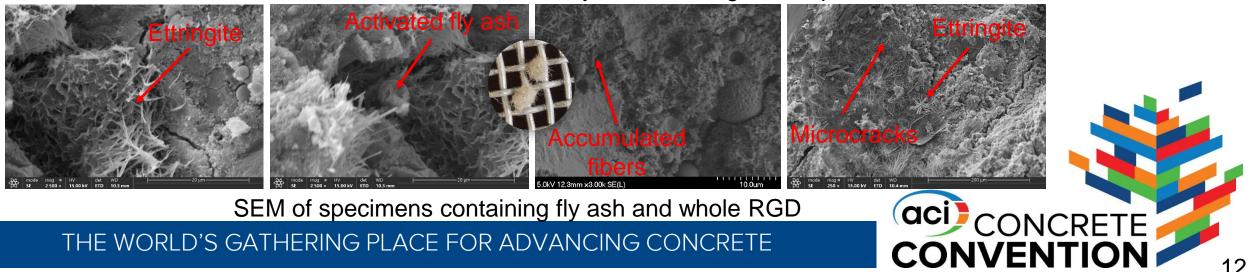

- Adding RGD as a cement replacement could reduce the early age strength of concrete.
- Fine RGD and whole RGD had approximately the same influence on the compressive strength of high-volume fly ash concrete.
- RGD could be an efficient alternative for fly ash. However, the Al-to-S ratio should be used to optimize the fly ash to RGD ratio.
- Using biochar as an additive can promote the earlyage strength and increase the ductility of the concrete, while reducing its carbon footprint.
- Preheating RGD could boost the early-age reaction of concrete.

NCRFTF

Results: Feasibility of whole RGD (Porosity)


Incorporating whole RGD as either cement or fly ash alternative reduced the bulk density of the composite at all ages, possibly due to the fiber accumulation.

UPV Replacing RGD could boost the OŤ the specimens, potentially due to its effect on activating fly ash particles and forming dense ettringites.



Results: Short-term properties (microstructure)

SEM of specimens containing fly ash

- The cement paste in the mix containing fly ash is primarily composed of CSH hexagonals and calcium carbonates.
- RGD incorporation boosts the formation of concentrated ettringites.
- RGD could activate fly ash, boosting its reactivity with cement paste by offering sulfate ions.
- Incorporating RGD into concrete might cause microcracks.
- The fibers in the RGD accumulated at specific points in the • system, forming weak spots in concrete.

Conclusions

- Whole RGD can be used in high-volume fly ash concrete as a replacement for both cement and fly ash.
- Replacing fly ash with RGD found to be an efficient method to reduce the portion of fly ash without sacrificing strength.
- The effect of whole RGD on the mechanical properties of the composite is similar to that of fine RGD, highlighting its potential as an SCM and preventing 70% of RGD from being landfilled.
- Using 10% RGD in concrete significantly decreases its compressive strength during the first 28 days. However, delayed reactions of RGD may enhance strength development between 28 and 90 days.
- A treatment is required to remove fibers from RGD, as fiber accumulation can create weak spots in concrete, increasing porosity and reducing strength.
- RGD promotes the formation of ettringite in the cement paste, raising concerns about the potential for internal sulfate attack.
- Adding RGD to concrete may activate fly ash particles by supplying SO₄²⁻ ions, which can dissolve alumina from fly ash and facilitate its reaction with the cement paste.

In progress research: Test matrix and tests

Short-term

- Primary goal: Examining the effect of whole RGD as a fly ash alternative and its optimal dosage.
- Tests:
 - Bulk density;
 - Ultrasonic pulse velocity;
 - Compressive strength;
 - Modulus of elasticity;
 - Microstructure.

Testing at 7, 28, and 90 days with moist curing.

Mix decign	Binder composition (%)								
wix design	Blended cement	Fly ash	Whole RGD						
BC100	100	0	0						
BC85F15	85	15	0						
BC80F20	80	20	0						
BC70F30	70	30	0						
BC70F25WG5	70	25	5						
BC70F20WG10	70	20	10						
BC70F15WG15	70	15	15						
BC75F15WG10	75	15 📘	10						
Total of 216 concrete cylinders									
Long-term (Durability)									
CONVENTION 14									
	BC85F15 BC80F20 BC70F30 BC70F25WG5 BC70F20WG10 BC70F15WG15 BC75F15WG10 Tc	Mix design Blended cement BC100 100 BC85F15 85 BC80F20 80 BC70F30 70 BC70F25WG5 70 BC70F15WG15 70 BC75F15WG10 75 Total of 216 concrete Long-term (Durability)	Mix design Blended cement Fly ash BC100 100 0 BC80F15 85 15 BC80F20 80 20 BC70F30 70 30 BC70F25WG5 70 25 BC70F20WG10 70 20 BC70F15WG15 70 15 BC75F15WG10 75 15 Total of 216 concrete cylinders Long-term (Durability)						

In progress research: long-term properties

- Primary goal: Examining the effect of RGD incorporation on Internal sulfate attack.
- Test environments
 - Dry condition;
 - Seawater (Continuous);
 - 5% sodium sulfate solution (Continuous);
 - 5% Sodium sulfate solution (Biweekly: wet and dry).
- Test factors:

DALHOUSIE UNIVERSITY

- Dimensions (Expansion in diameter, weekly);
- Strength loss (1000, 3000, and 6000 hrs);
- Modulus of elasticity (1000, 3000, and 6000 hrs);
- Weight loss (1000, 3000, and 6000 hrs);
- UPV (1000, 3000, and 6000 hrs);
- Microstructure (1000, 3000, and 6000 hrs).

Thanks for your attention!

Q & A

My research area

Scan me!

Materials: Biochar, Hydrochar, Recycled gypsum drywall, Flax, recycled aggregates, and Geopolymer and alkali-activated concrete

Duration: Short-term (7, 28, and 90 days) and long-term (1000, 3000, and 6000 hrs)

Tests:

Compressive strength, Porosity, Microstructure, Carbon footprint, Stress-strain behavior, Wave propagation

aci

NCRETE