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Leveraging machine learning and Bayesian optimization for
developing low-CO, and cost-efficient mixtures containing SCM
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Cement industry: a Wood a sustainable
major CO, contributor. solution?
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Volume of Cement Consumed by End Use Sector, Tons, Global, 2018-2030
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https://www.mordorintelligence.com/industry-reports/cement-market
https://www.energy-transitions.org/wp-content/uploads/2020/08/ETC-sectoral-focus-Cement_final.pdf
https://www.energy-transitions.org/wp-content/uploads/2020/08/ETC-sectoral-focus-Cement_final.pdf

PCA roadmap to carbon neutrality

Key chemically
reactive ingredient

The binder Critically useful Service life / Concrete is
material to society use phase impacts a COz sink

CLINKER ) CEMENT CONCRETE CONSTRUCTION ‘ CARBONATION

Less CO, in clinker (e.g., energy efficient kilns powered by
renewable electricity)

Less clinker in cement (e.g., high SCM, geopolymers)

Improve concrete (e.g., lean mixtures, avoid over design,
recycled aggregates, seawater)

Improve construction and maintenance (e.g., durability)

Carbon capture and mineralization
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Need for mix design optimization to meet
performance while reducing CO2/cost.
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Input Process = Output

Performance
Concrete
Performance

Ingredients
Mix proportions

Cement, SCM, Agg

i Workability,
: MACHINE .
wiom, SChfem aai Strength,
Aggiem, ... Durability, ...

Mixture
Optimization

Ingredients, o ‘ Mixture
Concrete proportions
Performance
[
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1. Database:

of concrete mix designs vs
strength from literature data, in-

house test data, and industry

contacts.

Table — Example mix design input

54.59%

2.29% 3 98y,

4.36%

= Silica Fume

11.01% = Lime Stone Powder

= 100% OPC
GGBFS
11.93% m Calcined Clay

= Natural Pozzolan

u Fly Ash

Distribution of 450 binary mix designs by SCM type

in the database

Blaine's Calorimeter
Ca0o Sio2 Al203 Fe203 S03 MgO | Na20eq Lol Fineness Al203 R3 - 7 day T. Agg./Bin.| fx{d)/f.,(10) fu (Mpa)
(m"2/kg) (¥/e) Gyp/ecm | w/ecm | scm/em
10 64.45 19.08 5.31 3.77 3.12 1.66 1.10 0.43 351 32.96 737.21 0.015 0.500 0.296 2.00 1.312 56.28
s
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R? of correlation to 28 days relative strength
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Coefficient of variation (%)

Source: Li et al. 2018

1
300

Mix design for R3 paste, gr

Alkaline
SCM Ca(OH), | CaCOq4 solution
10 30 5 54

Mix for 2 mins and sealed cure at 40°C.
Measure bound water or cumulative
heat of rxn at 7 days.
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https://link.springer.com/article/10.1617/s11527-018-1269-x

2. Strength Model:

A machine learning model based
on Gaussian process statistics to
predict compressive strength
from concrete ingredients + mix
design.

. Mix Design Model:

Given available cement and
SCM properties, Bayesian
Optimization offers optimum mix
design meeting target strength at
min. CO,, and cost
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Optimized Mix Design with
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Training of the strength predictor ML model:

Feature Importance score based on
RF model with n number of features

'

e

Incremental modeling

~

Set of n number of featuresin
ascending order of their Importance
Rank

|

Generate subset of input features
(15t Ranked), (15t + 2" Ranked),(1%t +
2"d + 3rd Ranked),

(15t + 2nd + .. .nth Ranked)

Train and Validate the Models

\

)
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Performance Score
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Cross-validated R2 Score

Model performance vs. Features used
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Model Training and Validation

Root mean squared error

RMSE Across Folds

Optimized hyperparameters for Random
Forest Prediction Model

Max Depth: 15,
Max Features: 0.8,
Min samples leaf: 1.84,
Min samples split: 2,
Min weight fraction leaf: 0.002,
n estimators: 50

Shuffle Data |

; : Split Training
Split Dataset into

dataset into
K-folds

BB E

Take care of all

Transformation in
the the fold

Training and Test Training

R

Test
2 |
I g
[

Always leave 1
fold for Test

on each fold

K-fold Cross Validation
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Use (K-1) fold for

Find the accuracy

— Mean: 5.62 (@

1 23456 7 8 910
Fold

Cross-Validated
Error Metrics:
Mean MAE: 4.1

Mean RMSE: 5.62

Mean R? Score: 0.85

RMSE Distribution

R?

Mean absolute error
MAE Across Folds

MAE Distribution
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Test the prediction accuracy of the model
using 20% of data that the model was
never trained on.

Final Model Evaluation:
MAE: 4.36
RMSE: 5.68
R2Score: 0.88
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Frequency

Distribution of Absolute Errors

Absolute Error

Experimental Values

Percentage Difference (%)

Predicted vs Experimental Values on Test Set
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Framework for the mix design Bayesian Optimization
m O d e I (GWP from Miller et al. 2018, cost from industry)

. GWP Coef.
Parameters with highest Material | (g o, | OO/
impact on Strength Cement (OPC) 0.910 130
|n uts: Fly Ash (FA) 0.027 79
P : _ Design Variables CI _sm:gu (cc) g-gz: 13[5)
alcined Clay .
Cement’ SCM propertles’ W/cm 0.24 - 0.5 Natural Pozzolan (NP) 0.006 93
Target performance scm/cm 0.0-056 Hmestone iler 15) | 0.007 | 60
. Silica Fume (SF) 0.024 650
T-Agg'/Bm 2.0-3.7 Coarse Aggregate (CA) 0.006 21
Cement_CaO Based on Cement Fine Aggregate (FA) 0.008 24
Calorimetry Heat (J/g) Based on SCM Water (W) 0.001 0
Gypsum (G) 0.008 60
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Predicted strength (fu): 42.56 MPa

scm/cm: 0.37 w/cm: 0.45
T.Agg./Bin: 3.69 Calorimetry Heat (J/g): 199.4
CO, Emission: 0.0848 kg CO,eq/kg Cost: 35.213 USD/ton
L *  Hull Vertices
0.14 Convergence Plot for CO, Emission and Cost + Mixes During Optimization
41 * Optimized Mix
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Achieves 33% CO,

reduction and 12% cost
reduction compared to
first Valid Mix
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scm/cm: 0.32
T.Agg./Bin: 3.69
CO, Emission: 0.101 kg CO,eq/kg

Predicted strength (fu): 47.97 MPa

w/cm: 0.48
Calorimetry Heat (J/g): 776.90
Cost: 36.18 USD/ton

Convergence Plot for CO; Emission and Cost

+ Hull Vertices
+ Mixes During Optimization

* Optimized Mix
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Conclusions

« Database, Strength model, and Mix design optimization model
developed.

« Strength Model predicts 28-d f'c (mean absolute error = 4.36
MPa) based on concrete mix design and properties of cement
and SCM.

* Mix Design Model offers an optimum mix design of min. CO,
and cost while meeting target strength.

* Models can be expanded to include ternary mixtures and
durability performance metrics.
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Answers to Questions shared in email

« How is this work novel and different than other ML models that exist for
predicting concrete strength?

* The novelty lies in integrating the R3 test data, a recent ASTM
standard (ASTM C1897), for SCM reactivity, and using the strength
prediction model for dual optimization of low CO, and cost. Existing
ML models, often focus on strength prediction using mix proportions,
curing age, or non-destructive testing parameters like resistivity, but
may not incorporate R3 test data or optimize for environmental and
cost metrics. And Most of the models do not include the variability in
SCM type in concrete mixes while R3 data make this model robust to
Include different SCM types in one model.
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Answers to Questions shared in emaill

 Why is air% not considered as a high priority feature?

 Air content has a large impact on compressive strength of
concrete. However, due to limited variability of air content
among mixtures available in our database, ML did not
identify air content as a significant predictor of strength.
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Answers to Questions shared in emaill

« How to make a ML model publicly available? What kind of interface
needs to be build?

« Options include open-source code on GitHub, pre-trained
model files, or web apps.
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