The Implementation of Fire Resistance Recommendations in ACI Code-440.11

Hamzeh Hajiloo, Carleton University

Bronwyn Chorlton, Mark F. Green, Queen's University

Outline

- Research steps to identify the fire safety concerns
- Glass fiber reinforced polymer (GFRP) materials at high temperatures
- Design approaches to mitigate fire effects on FRP reinforced concrete

Fire resistance of GFRP reinforced concrete

- GFRP reinforcing bars are resistant to corrosion and have high strength-toweight ratios
- Concerns about GFRP material performance at high temperature
- Extensive research has been conducted to understand the behavior of GFRP-reinforced concrete members under fire conditions
- Design standards (e.g., ACI Code-440.11) have been updated to include guidelines for achieving fire safety

Challenges in Establishing Fire Resistance

- ASTM E119 was developed on the notion that steel reinforced members are designed for full-strength, however, GFRPreinforced concrete members are designed for service loads
- Deflection limits and crack width criteria generally govern design with GFRP reinforcement
- ASTM E119 requires application of a superimposed load, usually based on strength only

CSA S806-12: Building structures with FRPs

- Provides a semi-empirical approach for determining the fire resistance of FRP reinforced concrete
- Based on minimum concrete cover

- Annex R Procedure for the determination of a fire-resistance rating for concrete slabs reinforced with FRP and concrete members strengthened with FRP
- Reliant on the notion of a critical temperature at which the reinforcing bar loses 50% of its strength — taken as 250 °C (480 °F) for CFRP and 325 °C (620 °F) for GFRP bars

CSA S806-12 – Temperature of reinforcement

Note: This figure is based on Kodur and Baingo (1998).

Figure R.1 Fire resistance of 120 mm concrete slabs (carbonate aggregate)

(See Clause R.1.)

Steps in studying GFRP in fire

Tensile strength at high temperatures

Temperatures within the thickness of the slabs.

Bond strength at high temperatures

Highlights:

New test series conducted in 2023

Bond strength at high temperatures

Highlights:

- Loss of bond strength (more than 80% loss at 170 °C (340 °F))
- Similar behaviour for GA and GB
- Slightly better bond strength of GC due to mainly higher glass transition temperature, T_a .

The conditions at end zones of GFRP concrete slabs End zone length 200 mm (8 in.) & 40 mm cover (1.5 in.)

- Three hours of fire resistance
- 600 °C (1100 °F) at the bottom of the bars in the exposed zone
- $100 \,^{\circ}\text{C}$ at 75 mm (3 in.) and 350 $^{\circ}\text{C}$ at 150 mm (6 in.) from the end of the slab

Temperature gradients in the unexposed zones

Condition of bars in the exposed and unexposed zones

ACI 440.11-22 guidelines for fire safety

- 1. Concrete cover
- 2. Unexposed length of FRP bars (embedment length)
- 3. FRP reinforcement layout (splices, cut-offs)
- 4. The tensile stress in FRP bars

Embedment into the support of at least 12 in. or $20d_b$ is conservative.

Table R20.5.1.3.1—Fire resistance rating provided by minimum cover for non-bond-critical GFRP reinforcement

	Fire resistance, h				
Specified cover, in,	Slabs and non-load- bearing walls	Beams	Columns and load-bearing walls		
2	1.5	1	0.5		
1-1/2	1	0.5	0.5		
3/4	0.5	NΛ	Less than 0.5		

ACI 440.11-22 guidelines for fire safety

If adequate embedment is not possible, additional protection can be provided by using a haunch or drop panel or insulating the concrete.

Protection of GFRP reinforcement near supports (Figures from ACI 440.11-22)

Tentative test matrix

Several layers of fire protection to increase the cool embedment length of GFRP bar.

Insulation	l _p	Th _p
Gypsum Board	20 in (500 mm)	1 in (25 mm)
Gypsum Board	40 in (1000 mm)	½ in (12.5 mm)
SFRM	20 in (500 mm)	1.5 in (38/ mm)
Intumescent Paint	60 in (1000 mm)	1000 μm
Intumescent Paint	All substrate length	1000 μm

IBC, Chapter 7, Section 721

Tables: 721.1(3)- minimum protection for floor and roof systems

Item	Insulation Material	Thickness of floor or roof slab (inches)			Minimum thickness of ceiling (inches)				
		4 hours	3 hours	2 hours	1 hour	4 hours	3 hours	2 hours	1 hour
Reinforced Concrete Floor	Slab with suspended ceiling of vermiculite gypsum plaster over metal lath	3	2	-	1	1	3/4	1	-
	3/8" Type X gypsum wallboard	-	-	$2\frac{1}{2}$	-	-	-	5/8	-

		Minimum Thickness for				
Item	Insulation Material	4 hours	3 hours	2 hours	1 hour	
Reinforcing steel in reinforced concrete columns, beams girders	Carbonate, lightweight and sand-lightweight aggregate concrete	$1\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	
	Siliceous aggregate concrete	2	$1\frac{1}{2}$	$1\frac{1}{2}$	$1\frac{1}{2}$	

Conclusions

Professional engineers who design GFRP-reinforced concrete must be aware of these guidelines and recommendations to achieve the desired fire ratings.

With proper design practices, GFRP-reinforced concrete members can be safely incorporated into reinforced concrete structures, ensuring both structural integrity and fire safety.

Acknowledgements

- NRC collaborators: Noureddine Benichou, Hossein Mostafaei, Mohamed
 Sultan
- Brahim Benmokrane, University of Sherbrooke
- Technical staff at NRC, Queen's, and the University of Sherbooke
- Funders: NSERC, MITACS, MTO
- Industry sponsors: Pultrall, BP Composites, MST Bar

Thank you. Questions?

