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Background 

Traditional Approaches

• Strain to Strain Cycles: Using the rain-flow 
counting method 
• Empirical Equations: Using empirical 
equations, including Mander's equation
• Fatigue Damage Models: Usage of fatigue 
damage models, like the Palmgren-Miner damage 
rule, for manual damage prediction.

Objectives
The main objective of the study is to transform the 
traditional method of predicting damage of reinforcing steel 
bars to an advanced automated method.
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Can ML Transform low-cycle fatigue estimation
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Test Bed  
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Test Bed  

Motion 17 18 19 20A 20B 21A 21B 21C Total 

# of 

Fractures
1 24 29 5 5 0 1 5 70

Method 1:

Fracture Estimation by Acoustic Emissions
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Strain Estimation

1- Bar buckling in the columns was inhibited by a confining tube detail; 

2- Strains in the reinforcement were distributed over deliberately 

debonded lengths;

3- All 72 of the column’s longitudinal reinforcement fractured during 

testing; and  

4- Because the system deformed by rocking, the strain response histories 

could be calculated from the measured rotations at columns’ ends after 

the deformation capacities of the strain gauges were exceeded. 



Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars 12

Strain Estimation
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Estimation of Fracture of Reinforced Bars 
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Estimation of Fracture of Reinforced Bars 
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Estimation of Fracture of Reinforced Bars 



Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars 16

Fracture Estimation Summary



17

Fracture Estimation Summary

Legend:

Earthquake Motions and Strain Data

Seismic Testing:
• Three shake tables are used.
• 24 earthquake motions applied.
• Focus on 11 high-amplitude motions for fatigue 
damage.

Strain Calculation:
• Utilized "Displacement Method" for strain 
estimation.
• Calculation based on rigid-body rocking 
assumptions.

Data Selection:
• Only strains from 11 high-amplitude motions are 
considered.

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars

Strain Data
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars

Strain from reinforcing 

steel bars

Conversion using MTF
Prediction

Data 

preprocessing
Undamaged,

Damaged

Output

Computer vision
CNN

The use of only strain data instead of strain cycles in detecting damage to reinforcing bars. This helps in reducing the task of using the 
rainfall counting method.
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars

Damage Detection from Images using Deep Learning and Transfer Learning   

Gao, Y. and Mosalam, K.M. (2018), Deep Transfer Learning for Image‐Based Structural Damage Recognition. Computer‐Aided Civil and Infrastructure Engineering, 33: 748-768. https://doi.org/10.1111/mice.12363

Vibration Based Structural Condition Assessment using input images constructed 
from acceleration time history using CNN

Khodabandehlou, H., Pekcan, G., & Fadali, M. S. (2019). Vibration‐based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, 26(2), 
e2308.

Reconstruct image 
matrix using 
acceleration time 
series data
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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Converting time series to histogram data 

Azimi, M., & Pekcan, G. (2020). Structural health monitoring using extremely compressed data through deep learning. Computer‐Aided Civil and Infrastructure Engineering, 35(6), 597-614.

Constructing 2D- grid image from time series data and converting time-series data to histogram data 

ignores the temporal effect in the measured data (strain, displacement, acceleration)  
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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Data preprocessing

• Conversion of strain data to 2D images using Markov transition field

• After damage,  noise strain data was created and it was also converted to a 2D image

• These images for all motions were stacked upon each other and used as input, as  strain was not supposed to be added

𝑀 =

ห𝑤𝑖𝑗 𝑥1 𝑞𝑖 , 𝑥1 𝑞𝑗 ⋯ ห𝑤𝑖𝑗 𝑥1 𝑞𝑖 , 𝑥𝑛 𝑞𝑗

ห𝑤𝑖𝑗 𝑥2 𝑞𝑖 , 𝑥1 𝑞𝑗 ⋯ ห𝑤𝑖𝑗 𝑥2 𝑞𝑖 , 𝑥𝑛 𝑞𝑗

ห𝑤𝑖𝑗 𝑥3 𝑞𝑖 , 𝑥1 𝑞𝑗 ⋯ ห𝑤𝑖𝑗 𝑥3 𝑞𝑖 , 𝑥𝑛 𝑞𝑗

⋮ ⋱ ⋮
ห𝑤𝑖𝑗 𝑥𝑛 𝑞𝑖 , 𝑥1 𝑞𝑗 ⋯ ห𝑤𝑖𝑗 𝑥𝑛 𝑞𝑖 , 𝑥𝑛 𝑞𝑗

MTF conversion:
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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Data preprocessing

• Conversion of strain data to 2D images using Markov transition field

• After damage,  noise strain data was created and it was also converted to a 2D image

• These images for all motions were stacked upon each other and used as input, as  strain was not supposed to be added

Strain data
Image

MTF

Noise Data data
Image

MTF
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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CNN Architecture 
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Fracture Estimation Summary
Detecting damage from strain using  computer vision and machine 
learning algorithms
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CNN Architecture 

Damaged Rebar 



27

Fracture Estimation SummaryResults 

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars

Confusion Matrix
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Fracture Estimation SummaryWhat is Next? 

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars
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Fracture Estimation SummaryConclusions 

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars

1. The developed multi-channel input convolutional neural network model using encoded images from strain 
records showed excellent accuracy above 96% for all proposed scenarios.

2. The use of low noise strain time series data following the fracture of the reinforcing bar in the input 
channels was capable of balancing the input layer across the utilized data and enabled an efficient and 
robust CNN model.

3. The developed CNN model is simple and not overly complex, with three-layered CNN architecture with 
acceptable accuracy.

4. The developed process enabled, for the first time, the use of raw strain data to predict reinforcing bar 
fractures, which reduced the reliance on empirical equations for damage models and the use of cycle 
counting algorithms. 

5. The use of CNNs can reduce the need for costly, time-consuming, and potentially ineffective traditional 
inspection techniques. CNNs can contribute to the development of more resilient and safer infrastructure 
by providing a more precise and efficient method of detecting and characterizing damage.
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