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Test Bed
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Test Bed
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Test Bed
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Test Bed
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Method 1:

Fracture Estimation by Acoustic Emissions
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Strain Estimation

1- Bar buckling in the columns was inhibited by a confining tube detail,

2- Strains in the reinforcement were distributed over deliberately
debonded lengths;

3- All 72 of the column’s longitudinal reinforcement fractured during
testing; and

4- Because the system deformed by rocking, the strain response histories
could be calculated from the measured rotations at columns’ ends after
the deformation capacities of the strain gauges were exceeded.

Rotation at E-W
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Strain Estimation
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Estimation of Fracture of Reinforced Bars

Estimate the bar elongation
history using the Displacement
Method (Elong.)

Calculate the bar strain
history using the debonded
length (Strain)
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Estimation of Fracture of Reinforced Bars

Low cycle fatigue |

- Rainflow algorithm
equations

Calculate the number of cycles
corresponding to each strain
increment for Strain; (n;);

Calculate maximum number

of cycles until fracture
(N;);

Miner Rule

Calculate the fatigue damage
index :

i=n (n.).
oo 5.

Calculate the accumulative
fatigue damage index :
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m: Number of ground motions

n: number of increments Cumulative Fatigue Damage Index (%)
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Estimation of Fracture of Reinforced Bars
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Fracture Estimation Summary
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Strain Data
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Detecting damage from strain using computer vision and machine

learning algorithms

Strain from reinforcing

steel bars Computer vision
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The use of only strain data instead of strain cycles in detecting damage to reinforcing bars. This helps in reducing the task of using the
rainfall counting method.
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Detecting damage from strain using computer vision and machine

learning algorithms
Damage Detection from Images using Deep Learning and Transfer Learning

R /Col 86.30% o 9,94

(a) Component type (b) Spalling condition (c) Damage level (d) Damage type

Gao, Y. and Mosalam, K.M. (2018), Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering, 33: 748-768. https://doi.org/10.1111/mice.12363

Vibration Based Structural Condition Assessment using input images constructed
from acceleration time history using CNN e e

Layers
Convl Conv2 Convi Convd Conv$ = = = =
Reconstruct image :"l
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acceleration time | —— | — = B B P et
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Input Max Max Max Max Max
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Khodabandehlou, H., Pekcan, G., & Fadali, M. S. (2019). Vibration-based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, 26(2),
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Detecting damage from strain using computer vision and machine

learning algorithms

Converting time series to histogram data
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Azimi, M., & Pekcan, G. (2020). Structural health monitoring using extremely compressed data through deep learning. Computer-Aided Civil and Infrastructure Engineering, 35(6), 597-614.

Constructing 2D- grid image from time series data and converting time-series data to histogram data
Ignores the temporal effect in the measured data (strain, displacement, acceleration)
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Detecting damage from strain using computer vision and machine

learning algorithms

Data preprocessing

* Conversion of strain data to 2D images using Markov transition field
* After damage, noise strain data was created and it was also converted to a 2D image

* These images for all motions were stacked upon each other and used as input, as strain was not supposed to be added

MTF conversion: iy Time Series(at time 1) Gramian Angular Field (at time 1)
Wl] X1 qi» X1 q] WU X1 qi» Xn q]
Wij|X2 Gi, X1 G5 Wij|X2 @iy Xn q; Il
M=\ wijlxs qixs q; - wiglxs x5 g5 “
: ° : n_zl
WijlXn 4iy X1 45 = Wij|Xn 4i,Xn 4 o0
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Detecting damage from strain using computer vision and machine

learning algorithms

Data preprocessing

* Conversion of strain data to 2D images using Markov transition field
» After damage, noise strain data was created and it was also converted to a 2D image

* These images for all motions were stacked upon each other and used as input, as strain was not supposed to be added

Image
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Detecting damage from strain using computer vision and machine

learning algorithms
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Detecting damage from strain using computer vision and machine

learning algorithms
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Detecting damage from strain using computer vision and machine

learning algorithms
CNN Architecture
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Detecting damage from strain using computer vision and machine

learning algorithms
CNN Architecture
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Training Testing
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Conclusions

1. The developed multi-channel input convolutional neural network model using encoded images from strain
records showed excellent accuracy above 96% for all proposed scenarios.

2. The use of low noise strain time series data following the fracture of the reinforcing bar in the input

channels was capable of balancing the input layer across the utilized data and enabled an efficient and
robust CNN model.

3. The developed CNN model is simple and not overly complex, with three-layered CNN architecture with
acceptable accuracy.

4. The developed process enabled, for the first time, the use of raw strain data to predict reinforcing bar
fractures, which reduced the reliance on empirical equations for damage models and the use of cycle
counting algorithms.

5. The use of CNNs can reduce the need for costly, time-consuming, and potentially ineffective traditional
inspection techniques. CNNs can contribute to the development of more resilient and safer infrastructure
by providing a more precise and efficient method of detecting and characterizing damage.

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars



Acknowledgment

The presenter(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This project
was funded by Rowan University and U.S. DOT through the
Accelerated Bridge Construction University Transportation Center

(ABC-UTC) at Florida International University (Grant Reference No.
69A3551747121)

Machine Learning-Based Low Cycle Fatigue Techniques for Reinforcing Bars



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

