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Outline

• Introduction

• CO2 derived MWCNT and nanostructured carbon

• A novel technique to disperse MWCNT in cementitious composites

• Formulation of functional cementitious composite containing CO2-derived 

MWCNT

• Conclusions
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Introduction

• Cement and concrete manufacturing is carbon intensive

• Beneficial utilization of CO2 from cement manufacturing can be an 

effective means of decarbonization

• CO2 emitted from the manufacturing process can be used as 

feedstock for value-adding products



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Li2CO3 → Li2O + O2 + C

Li2O + CO2 → Li2CO3

NET: CO2 → C + O2
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Utilizing CO2-derived CNT

The SkyNano technology of MWCNT production is 

based on molten salt electrolysis, where carbonate-

ion reduction occurs at the cathode and oxide-ion 

oxidation occurs at the anode.  The captured CO2 

is then used to chemically regenerate the molten 

salt electrolyte by converting excess oxide ions 

back to carbonate ions. 

The system may be run in semi-batch or 

continuous mode with the only inputs as CO2 

(atmospheric or a concentrated source) and 

electricity.



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Utilizing CO2-derived CNT

1 ton cement emits 
0.71 ton CO2

Cement

CO2

Li2CO3 → Li2O + O2 + C

Li2O + CO2 → Li2CO3

NET: CO2 → C + O2
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Electricity 
(Renewables)

Highly tunable process 
to produce various nano- 
and micro-size carbon 
materials

MWCNT 
(Straight, 
10-30nm)

MWCNT 
(curved, 
>50nm)

‘Carbon 
Zoo’ (CZ) 
(sphere, 
flake…)

CNT/CZ Enabled Low-
Carbon Concretes

SCMs

Multi-scale reinforcing 
effect

Advanced 
Batteries

Aerospace & 
Composite Industry

Infrastructure
s

Cement 
Production

Tire Production

Convert 90-95% of 
the kiln CO2 on a 
single pass
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CNT Dispersion in Cementitious Materials
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As-received 

MWCNT

+ SAA

Sonication

Problem?

Over time

Re-agglomerate

A novel strategy for CNT dispersion using SCMs as Carrier

4-(1,1,3,3-tetramethylbutyl)-

phenyl group

Triton X-100

Polyethylene 

oxide group

https://en.wikipedia.org/wiki/2,2,4-Trimethylpentane
https://en.wikipedia.org/wiki/Phenyl
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A novel strategy for CNT dispersion using SCMs as Carrier

Cement 
Hydration 
with SCM

SCM

Nano-carbon 
Enhanced 

SCM

Cement

Aggregate

C-S-H gel Ettringite

Pore spacesMWCNT/CZ 

Treated SCM MWCNT
MWCNT/CZ 

Treated Fly 

Ash

Stably 

dispersed 

MWCNT/CZ 

aqueous 

solution

Non-hydraulic 
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Mixing + 

Drying

CZ



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

As-received 

MWCNT

+ SAA

Sonication

+ nonhydraulic SCMs 

(Fly ash, silica fume)

‘Volume exclusion’ effect

Does it really work?

A novel strategy for CNT dispersion using SCMs as Carrier
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FA-L0 Slurry

CNTs agglomerate and do 
not ‘coat’ the SCM surface

A novel strategy for CNT dispersion using SCMs as Carrier
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As-received 

MWCNT

+ SAA

Sonication

+ nonhydraulic SCMs 

(Fly ash, silica fume)    

+ polyacrylic latex  

‘Volume exclusion’ effect

PA polymer chain

A novel strategy for CNT dispersion using SCMs as Carrier
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As-received 

MWCNT

+ SAA

Sonication

+ nonhydraulic SCMs 

(Fly ash, silica fume)    

+ polyacrylic latex  

High-shear 

emulsification

Ca2+

Ca2+

72 hours after

A novel strategy for CNT dispersion using SCMs as Carrier
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As-received 

MWCNT

+ SAA

Sonication

MWCNT 

dispersed in 

aqueous 

solution

Emulsification

+ nonhydraulic 

SCM

+ PA latex

Stable SCM-CNT 

Suspension 

(ready for mixing)

A novel strategy for CNT dispersion using SCMs as Carrier
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FA-L1 Slurry

Well dispersed with long 
‘shelve life’

A novel strategy for CNT dispersion using SCMs as Carrier



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

FA-L1 Slurry

Well dispersed with long 
‘shelve life’

A novel strategy for CNT dispersion using SCMs as Carrier
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FA-L1 Slurry

Well dispersed with long 
‘shelve life’

A novel strategy for CNT dispersion using SCMs as Carrier
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Nano-carbon Infused 
Nonhydraulic SCM

Pore spaces
MWCNT/CZ Treated SCM

MWCNT/CZ treated unconventional SCMs acting as 

dispersant to improve MWCNT/CZ dispersion while densifying 

the microstructure of cement binder

Reaction in Cementitious Materials Sytem

Reaction with Cement



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Mix ID Cement Water SCM PA Latex CNT Surfactant

SCM Type 

Silica fume

SF-control 95 30 5 0 0 0

SF-L0 95 30 5 0 0.5 0.5

SF-L1 94 30 5 1 0.5 0.5

SF-L2 93 30 5 2 0.5 0.5

SF-L5 90 30 5 5 0.5 0.5

SF-L10 85 30 5 10 0.5 0.5

SCM Type 

Fly ash

FA-control 90 30 10 0 0 0

FA-L0 90 30 10 0 0.5 0.5

FA-L1 89 30 10 1 0.5 0.5

FA-L2 88 30 10 2 0.5 0.5

FA-L5 85 30 10 5 0.5 0.5

FA-L10 80 30 10 10 0.5 0.5

Mix proportions of final mixtures in kg/m3

Reaction in Cementitious Materials Sytem
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Hydration Kinetics

Mix ID

Peak Total hydration 

energy (J/g cement)Heat flow 

(mW/g cement)
Time (h)

SF-control 4.48 9.00 207.38

SF-L0 4.50 8.43 225.12

SF-L1 4.53 8.85 202.54

SF-L2 4.51 9.20 223.53

SF-L5 3.71 11.05 200.56

SF-L10 2.77 16.20 170.69
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Hydration Kinetics

Mix ID

Peak Total hydration 

energy (J/g cement)Heat flow 

(mW/g cement)
Time (h)

FA-control 3.62 9.47 206.56

FA-L0 3.78 8.75 211.53

FA-L1 3.80 8.65 212.39

FA-L2 3.29 9.62 202.46

FA-L5 2.85 12.67 192.42

FA-L10 1.59 27.53 146.85
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Hydration Kinetics

2

3

4

5

• The introduction of dispersed CNTs 

resulted in some acceleration in the 

primary heat evolution peaks. 

• For SF-L0, the maximum of 0.98 

mW/g s⁻¹ was reached at 4.28 hours 

of hydration, compared to 0.89 mW/g 

s⁻¹ at 4.52 hours for the reference 

mix, indicating an acceleration of 

14.4 minutes. 

• For FA-L0, the maximum of 0.81 

mW/g s⁻¹ occurred at 4.05 hours of 

hydration, compared to 0.73 mW/g 

s⁻¹ at 4.67 hours for the reference 

mix, indicating an acceleration of 

37.2 minutes. 

• This acceleration was followed by a 

less pronounced shoulder at 

approximately 18 hours, is correlated 

with sulphate depletion. 
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FTIR

• Larger peaks at 1098 and 1408 

indicates that CNT can inhibit the 

carbonation of cementitious 

composites to some extent

• Sharper intensity at 3392 indicates 

CNT accelerates the hydration of 

the cement and produces more 

calcium hydroxide crystals which 

can react with the carbon dioxide 

in the air to form calcium 

carbonate. It also indicates the 

increase of crystalline calcium 

hydroxide.
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Microstructure

SF-L0 Cementitious Nanocomposite



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Microstructure

FA-L0 Cementitious Nanocomposite
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Microstructure

SF-L1 Cementitious Nanocomposite
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Synergistic Effect of SCM and PA Polymer
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Li2CO3 → Li2O + O2 + C

Li2O + CO2 → Li2CO3

NET: CO2 → C + O2

**Electrode 

architecture to 

produce high 

quality CNTs 
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Highly tunable process to 
produce various nano- and 
micro-size carbon materials

CO2

Electricity 
(Renewables)

Atmospheric 
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Enabling 
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Utilizing CO2-derived CNT in 3D Printable Cementitious Composites
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Mix ID Cement Water CNT sand SP Cellulose Ether

Control 100 30 0 100 0.2 0.1

0.1CNT 100 30 0.1 100 0.2 0.1

0.2CNT 100 30 0.2 100 0.2 0.1

0.5CNT 100 30 0.5 100 0.2 0.1

1CNT 100 30 1 100 0.2 0.1
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Utilizing CO2-derived CNT in 3D Printable Cementitious Composites
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Evaluating CO2-CNT in 3DP CC

Hydration Kinetics
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Evaluating CO2-CNT in 3DP CC

Fresh Properties
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Printability

Evaluating CO2-CNT in 3DP CC



THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE

Mechanical Properties
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Electric Conductivity
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Evaluating CO2-CNT in 3DP CC
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Microstructure

Microstructure
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• A novel strategy was proposed to effectively disperse CNT and other forms of 

nanostructured carbon (e.g., graphene) in cementitious composites using 

SCMs as ‘carriers’

• The synergistic effects of SCMs, dispersants (e.g., surfactants), and PA latex 

was investigated. 

• The feasibility of utilizing CO2-derived CNTs in 3D printable cementitious 

composites was explored 

• The effects of C-CNTs on hydration kinetics, fresh properties (e.g., rheology 

and flowability), hardened properties (mechanical and electrical), and 

printability are investigated.

Conclusions
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