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Introduction
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« Cement and concrete manufacturing is carbon intensive

 Beneficial utilization of CO, from cement manufacturing can be an
effective means of decarbonization

« CO, emitted from the manufacturing process can be used as
feedstock for value-adding products
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Utilizing CO,-derived CNT

Li,CO; 2 LI, O+ 0O, +C
= Li,0 + CO, 2 Li,CO; The SkyNano technology of MWCNT production is
1,0 NET: CO, > C + 0, based on molten salt electrolysis, where carbonate-
< N ilon reduction occurs at the cathode and oxide-ion
| eten | wgrectrode oxidation occurs at the anode. The captured CO,
: 2| architectureto is then used to chemically regenerate the molten
¢ Tﬁﬁ;ecﬁ'\:gg salt electrolyte by converting excess oxide ions
2 IP protected** back to carbonate ions.

The system may be run in semi-batch or e
continuous mode with the only inputs as CO,
(atmospheric or a concentrated source) and

electricity.
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Utilizing CO,-derived CNT

ﬂ:NT/CZ Enabled Low- \

. I Carbon Concretes I I I

1 ton cement emité
/1)

§ 0.71 ton CO,
“ SR

Cement
Production

SKYNANO Multi-scale reinforcing

TECHNOLOGIES effect Infrastructure
- / S

Highly tunable process

to produce various nano-

and micro-size carbon

| oo, | materials
Convert 90-95% of | Advanced
the kiln CO, on a [ T T Batteries
single pass ": % ‘ -
(Renewablesy—— / MWCNT — MWCNT  ‘Carbon o

(Straight, (curved, Zoo’ (C2) Composite Industry Tire Produ
10-30nm)  >50nm) (sphere,

flake...)
(aci®
THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE -~ CONCRETE

CONVENTION



CNT Dispersion in Cementitious Materials

~ Crushing, shearing,
grinding or other
mechanical effects
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A novel strategy for CNT dispersion using SCMs as Carrier
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https://en.wikipedia.org/wiki/2,2,4-Trimethylpentane
https://en.wikipedia.org/wiki/Phenyl

A novel strategy for CNT dispersion using SCMs as Carrier
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A novel strategy for CNT dispersion using SCMs as Carrier
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A novel strategy for CNT dispersion using SCMs as Carrier

FA-LO Slurry

CNTs agglomerate and do
not ‘coat’ the SCM surface

et
| ! " ‘ = a ' ! FwW HV‘ : >1' m D EWD | P 2024-02-09 16:13
(aci®
THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE COJN(\:I%I}IQ%F\EEFEI




A novel strategy for CNT dispersion using SCMs as Carrier
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A novel strategy for CNT dispersion using SCMs as Carrier
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A novel strategy for CNT dispersion using SCMs as Carrier
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A novel strategy for CNT dispersion using SCMs as Carrier

FA-L1 Slurry

Well dispersed with long
‘shelve life’
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A novel strategy for CNT dispersion using SCMs as Carrier

Well dispersed with long
‘shelve life’
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A novel strategy for CNT dispersion using SCMs as Carrier

FA-L1 Slurry

Well dispersed with long
‘shelve life’
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Reaction in Cementitious Materials Sytem

Reaction with Cement

Pore spaces
MWCNT/CZ Treated SCM

Nano-carbon Infused
Nonhydraulic SCM

o
MWCNT/CZ treated unconventional SCMs acting as
dispersant to improve MWCNT/CZ dispersion while densifying
the microstructure of cement binder
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Reaction in Cementitious Materials Sytem

Mix proportions of final mixtures in kg/m3

Lo L comen | war | scw leataec] ovr | suractan
95 30 0 0 0

SF-control 5
SF-LO 95 30 5 0 0.5 0.5
SCM Type izt 94 30 5 1 0.5 0.5
SR SF-L2 93 30 5 2 0.5 0.5
SF-L5 90 30 5 5 0.5 0.5
SF-L10 85 30 5 10 0.5 0.5
FA-control 90 30 10 0 0 0
FA-LO 90 30 10 0 0.5 0.5
FA-L1 89 30 10 1 0.5 0.5
FA-L2 88 30 10 2 0.5 0.5
FA-L5 85 30 10 5 0.5 0.5

FA-L10 80 30 10 10 0.5 0.5 g
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Hydration Kinetics
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Hydration Kinetics
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Hydration Kinetics

» The introduction of dispersed CNTs
1 - 3 ——— FA-CONTROL resulted in some acceleration in the
primary heat evolution peaks.

* For SF-LO, the maximum of 0.98
mW)/g s was reached at 4.28 hours
of hydration, compared to 0.89 mW/g
st at 4.52 hours for the reference
mix, indicating an acceleration of
14.4 minutes.

* For FA-LO, the maximum of 0.81
mW/g s™* occurred at 4.05 hours of
hydration, compared to 0.73 mW/g
sl at 4.67 hours for the reference
mix, indicating an acceleration of
37.2 minutes.

=
n
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1

1
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in
1

Derivative heat flow (mW/gs-1)

1
—

0 6 12 18 24 30 36 * This acceleration was followed by a
Time (h) less pronounced shoulder at
approximately 18 hours, is correlated gt
with sulphate depletion.
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» Larger peaks at 1098 and 1408

indicates that CNT can inhibit the
carbonation of cementitious
composites to some extent

Sharper intensity at 3392 indicates
CNT accelerates the hydration of
the cement and produces more
calcium hydroxide crystals which
can react with the carbon dioxide
in the air to form calcium
carbonate. It also indicates the
increase of crystalline calcium
hydroxide.
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Microstructure

SF-LO Cementitious Nanocomposite
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Microstructure

FA-LO Cementitious Nanocomposite
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Microstructure

SF-L1 Cementitious Nanocomposite
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Synergistic Effect of SCM and PA Polymer
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Utilizing CO,-derived CNT in 3D Printable Cementitious Composites
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Utilizing CO,-derived CNT in 3D Printable Cementitious Composites
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Evaluating CO,-CNT in 3DP CC

Hydration Kinetics
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Evaluating CO,-CNT in 3DP CC
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Evaluating CO,-CNT in 3DP CC

Printability

Control
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Evaluating CO,-CNT in 3DP CC

Mechanical Properties
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Evaluating CO,-CNT in 3DP CC

Electric Conductivity

Electrical resistivity (kQ.cm)
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Microstructure

Microstructure

Fw HV Int. Det. res. 2023-12-13 11:05 } ] A A et. res. 2023-12-13 12:15
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Conclusions

« Anovel strategy was proposed to effectively disperse CNT and other forms of
nanostructured carbon (e.g., graphene) in cementitious composites using
SCMs as ‘carriers’

« The synerqgistic effects of SCMs, dispersants (e.g., surfactants), and PA latex
was investigated.

» The feasibility of utilizing CO,-derived CNTs in 3D printable cementitious
composites was explored

» The effects of C-CNTs on hydration kinetics, fresh properties (e.g., rheology
and flowability), hardened properties (mechanical and electrical), and
printability are investigated.
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Conclusion
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