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3D Printing with Cement

e Construction scale printing
* Fabrication of large-scale elements and structures

* Improving construction process: increase in productivity,
construction speed, design flexibility, architectural
freedom, and reduction of waste

* Adaptation of traditional cement-based mixtures
e Large filament layers and limited geometric control

 Creating/designing novel materials
* Exploration of innovative cementitious formulations

* Optimizing microstructure for targeted performance
(e.g., functionally graded materials)

* Implementing hierarchy of structures and patterns
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3D Printing with Cement

 Creating/designing novel materials
* Exploration of innovative cementitious formulations

* Optimizing microstructure for targeted performance
(e.g., functionally graded materials)

* Implementing hierarchy of structures and patterns

---> 3D Printed Architected Concrete
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e Hydra 430 (Hyrel 3D)

e Gantry-style 3D printer

* 400 mm x 300 mm x 250 mm
build area

e 60 um positional accuracy

* EMO-XT Printing Head

e Designed for paste extrusion
* 25 mL paste reservoir
* 1.6 mm nozzle tip
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3D Printed Architected Concrete

 Tailoring geometry and composition to manipulate properties
e Customization of mechanical properties - e.g., stiffness and impact absorption
» Control of crack propagation for enhanced structural integrity

e Optimization for thermal storage and efficient thermal transfer for energy
management

* Expand the design space opC

* Need to understand link between geometry,
composition, and material properties

* Need to understand filament formation and
properties
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Kosson et al., submitted
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Printability Requirements

e Extrudability — Sufficiently fluid and
pumpable for extrusion

* Workability and flowability — Pass through
the printing nozzle without discontinuity
to be placed in layers

Greater control of the hydration kinetics, rheology, and structuration rate to

ensure buildability and shape stability of the printed Iayers
* ypen ume 10r placement — Lnange or

flowability with time

* Set rapidly and have high resistance to
adhesive failure
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Small Diameter Extrusion Impact

Small diameter extrusion

J Lubrication
| Layer

* Admixture and inclusion types affect the
--------- = formation of the extruded filament

* Dynamic evolution of the cement ink
during extrusion

* Liquid phase filtration due to pressure inside
the 3D print head

* Formation of a lubrication layer

---> Dynamic evolution of w/c ratio

prin‘ted\fila ments |

Kosson et al., TRR 2674(2) 10-20, 2020
https://doi.org/10.1177/036119812090270
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Nanoparticle Benefits in Concrete

* Improved control of rheology and Specific Surface Area, m2/kg
setting rate WSO A GO — )
* Microstructural densification 1000000 e T
: 100,000 A
(reduced por05|ty). e pm.,,‘.t -
* Improved mechanical performance 1,000 FinlyGrodBE ™ Rt coment
o] inera itives  _ = - Aggregate
and durability K s
. . 10 1 Natural Sand
* Novel properties (e.g., self-sensing, :
self-cleaning) 01 .
0.01 Sanchez and Sobolev, CBM 24 (2010) 2060-2071

1 10 100 1,000 10,000 100,000 1,000,00010,000,000
Particle Size. nm

---> Role and effectiveness of nanoparticles in the context of 3D printing?
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Halloysite Nanoclay (HNC)

* Naturally occurring mineral with a two-layered tube structure — outer silica,
inner alumina

* 50-70 nm diameter, 1-3 um length, large surface
area: 64 m?/g

* Benefits: enhanced rheology and setting rates,
increased thixotropy, improved paste cohesion,
potential for nano-reinforcement

Alumina layer

Silica layer

Objective: Investigate the impact of halloysite nanoclay (HNC)
incorporation on the properties of hardened filaments and printed
structures
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3D Printed Materials

* Ink formulations

* Type I/1l Portland cement

 With and without 5% cement
replacement with HNC

* 0.3 w/c ratio; 0.5 w/c ratio;
high-range water reducer;
viscosity modifier; anti-washout
admixture

* Specimen types
e Rectilinear columns (100% infill)

e Concentric beams (100% infill)
* Cast companion specimens

Cast Column

Cast Beam

3D Printed Column

3D Printed Beam
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3D Printed Filament Formation and Morphology

Extrudability
HNC-free Cement Ink  HNC Cement Ink

Buildability

HNC-free Cement Ink HNC Cement Ink

* Improved extrusion consistency with HNC, reducing printing discontinuities

and underextrusion

e Decreased air voids and larger pores with HNC
* Enhanced ink viscosity and minimized water segregation with HNC
* Improved buildability and decreased deformation with HNC
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3D Printed Filament Microstructure
HNC Cement Ink

3D Printed Filament

v
"

Cast (s = .3)

\ 4

HNC clusters

* Presence of HNC clusters intermixed with hydrates

* Image analysis revealed a 20% variation in HNC cluster numbers among
printed filaments, indicating migration during extrusion

e Cast specimens had larger clusters, suggesting 3D printing helped breaking
up HNC clusters
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Nanoindentation and Micromechanical Characterization
Mechanically Distinct Phases

HNC-free Cement Ink

3D Printed Filaments Cast references
012 012
%' 01 HMP Filament =Eea::; ';f 0.1 w/e=03 =geat; . . . .
ea ea
= for e  Modulus distribution varies
| o 24.7 GPa m
2006 Peak 4 2006 : Peak 4 o .
Y T — Theoretical PDF s oA e Theoretical PDF
%0-04 —Experin:ental PDF %0.04 —Experin-:ental PDF a m O n g p rl nte d fl | a m e nts
£ 0.02 36.7GPa 4 5Gpa 105.5GPa i 002 38.5GPa 93.6GP 13.7GPa ° H H h / t I t
o ar s '
00 20 40 60 BUI 100 120 140 00 20 40 60 80 100 120 140 I.g e r W C ra I O CO r re a e S
Elastic Modul GP Elastic Modul GP
astic Modulus (GPa) sstic Modulus (GPa) with lower modulus values
012 17.6GPa - 0.12¢ w/c=05 - . .
P > =U. P
% o — R — ool e Stiffness (modulus) of printed
8 oos| LMP Filament  Epeak 3 Soop 17-1GPa Peak 3 . .
—Hoo o R Theoreica PDF filaments affected by dynamic
5 008 ~=Theoretical PDF g 008 —Experimental PDF . h
el i —Experimental PDF Rl /
Eou 63gPa B 28.3GPa . w/cC ratio chan ges
UU 20 40 6I0 BIO 1(;'!0 120 140 00 20 40 SLU 80 I 100 120 1;0
Elastic Modulus (GPa) Elastic Modulus (GPa)
HMP: High Mechanical Properties Kosson et al., JBE 66, 2023

LMP: Low Mechanical Properties https://doi.org/10.1016/j.jobe.2023.105874
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Nanoindentation and Micromechanical Characterization
Mechanically Distinct Phases

HNC cement Ink HMP: High Mechanical Properties
LMP HMP HNC free Cement Ink LMP: Low Mechanical Properties
oo [31 I BLMP Filament
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 HNC ink filament stiffness (modulus) varies, showing both higher and lower
values compared to without

* HNC ink filaments showed HNC-induced strengthening
 HNC had no effect on the median modulus value of the cast specimens
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Nanoindentation and Micromechanical Characterization
Mechanically Distinct Phases

HNC Cement Ink

3D Printed Filaments
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Kosson et al., submitted

02/ LMP Filament S o Water Segregatlon not the
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Frequency Density
o

e e om@rr o HNC migration during extrusion

m e @@ w influenced how stiffness was
distributed among filaments

HMP: High Mechanical Properties

o e  Lower modulus values correlate
with greater HNC clustering

« HMP filaments exhibited
higher stiffness (modulus)
than cast specimens
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Nanoindentation and Micromechanical Characterization
Chemical Signatures

HNC-free Ink Filament
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* High proportion of indents (>80%) associated with mixed C-S-H/CH phases

* Indents associated with HNC clusters show a diverse composition,
indicating the presence of various hydration products within these clusters

 More Al-rich indents with HNC, indicating dispersed HNC fibers and

aluminate phases
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Nanoindentation and Micromechanical Characterization
Chemical Signatures

HNC Cement Ink
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Kosson et al., submitted
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Nanoindentation and Micromechanical Characterization
Linking Chemical and Mechanical Information

HNC Cement Ink

3D Printed Filaments
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HNC-free Cement Ink
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https://doi.org/10.1016/].jobe.2023.105874

e Similar peak modulus values across
the different hydrates within a given
filament/cast specimen

* No dramatic changes in hydrate
proportions within each ink

* Micromechanical differences
attributed to changes in
microstructural arrangement of
hydrates, rather than changes in
their proportions

HMP: High Mechanical Properties
LMP: Low Mechanical Properties
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Nanoindentation and Micromechanical Characterization
C-S-H Phase Distribution

HNC Cement Ink

* Small diameter extrusion

3D Printed Filaments Cossom et ol submitied Cast (w/s = 0.3) : :
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Conclusions

Small Filament Extrusion

* Impacts mesoscale hydrate assembly and
micromechanical properties

* Leads to dynamic w/c ratio changes (without HNC)

* Induces dynamic shifts in HNC clustering and
distribution

HNC Incorporation

* Enhances ink printability and limits extrusion-driven
w/c changes

* HNC concentration in clustered and dispersed states
affects the micromechanical properties and
C-S-H packing density

M. Kosson and F. Sanchez, Vanderbilt, 2022
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