

TAILORING OF STEEL FIBER SURFACE BY COATING CELLULOSE NANOCRYSTAL FOR ULTRA-HIGH-PERFORMANCE CONCRETE (UHPC)

Presenter: Weina Meng

Assistant Professor

Stevens Institute of Technology Department of Civil, Environmental and Ocean Engineering Advanced Concrete Technology (ACT) Lab

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Table of contents

- Research objectives
- Research approaches
- Results and discussions
- Conclusions

Flexural properties of UHPC need to be improved

- Higher flexural performance is needed to extend the its applications.
- Steel fibers surface modification is a promising method
 - Increase the fiber pull-out forces and energy [1]
 - Increase the flexural strength and toughness [2]

[1] Pi et al. Cem Concr Compos. 2019, 103, 1-10.[2] Du et al. Cem Concr Compos. 2023, 137, 104926.

Current challenges for surface modification

- Plasma surface treatment (15% increase in flexural strength [1])
 - Equipment of plasma treatment is expensive.
 - Difficult for large-scale production.
- ZnPh surface coatings (20% increase in flexural strength [2])

Plasma

 $(O_2 \& Ar)$

- > Both Zn^{2+} and Ph^{2-} are pollutants for water and soil.
- Nano-SiO₂ surface coatings (25% increase in flexural strength [3])
 - The coating process is complicated and is hard for large-scale production.

[1] Miller et al. *Cem. Concr. Compos.* 2019, 97, 24-32.
[2] Zhu et al. J. Mater. Civ. Eng. 2020, 32(10), 06020013
[3] Oh et al. Compos. B. Eng. 2021, 221, 109030.

Research objectives

- To enhance flexural behaviors of UHPC by coating the steel fibers with cellulose nanocrystal (CNCs)
- To evaluate the effect of CNCs coating on the key properties of UHPC
- To understand the underlying mechanisms

CNCs are environmentally friendly and cost-effective nanomaterials manufactured from natural sources

Benefits of CNCs

- CNCs are environmentally friendly (renewable, biodegradable, sustainable, low toxicity, and low cost)
- CNCs have abundant hydroxyl functional groups on the surface, therefore it can form strong bond with cement paste and promote the cement hydration.
- CNCs also exhibit large surface area, high aspect ratio, high elastic modulus and tensile strength, and low density.

Current usage of CNCs in concrete: direct addition

Shrinkage (µm)

- By adding the optimum dosages of CNCs
 - Enhance the mechanical performance
 - Promote the cement hydration
 - Densify the microstructure
 - Reduce the autogenous shrinkage

Mazlan et al. *Sci. Rep.* 2020, 10(1), 6412.
 Fu et al. *Polymers.* 2017, 9(9), 424.
 Lee et al. *Appl. Sci.* 2019, 9(3), 426.

Enhancement mechanisms by CNCs

- Bridge effect
 - > CNCs acts as nano-size fibers to bridge the cracks.
- Internal curing effect
 - > (1) CNCs are hydrophilic and hygroscopic; (2) short circuit diffusion effect.

Current problems of using CNCs in UHPC

- The content of CNCs can be used in concrete application is low (around 0.5%, by mass).
- High CNCs concentration leads to the agglomeration, which compromises the mechanical properties.

Well-dispersed CNCs in aqueous solution

Agglomeration of CNCs in aqueous solution

Agglomeration of CNCs on cement particles

Significance of this research

- Coat the CNCs on fibers is a better way to utilize the nano materials.
 - CNCs coating can mitigate the agglomeration of CNCs in cement pore solution.
- This study proposes an effective method to coat CNCs on surface of steel fibers to improve the flexural performance of UHPC:
 - CNCs is assumed significantly enhance the ITZ between the steel fibers and UHPC matrix, thus improve the bonding properties and flexural strength.

Schematic diagram of CNCscoated steel fibers

Coat CNCs on steel fibers

- Step 1: Pretreatment
 - Pristine steel fibers were immersed in NaOH solution (solid content: 20%) for 30 min to enhance the surface activity.
 - Steel fibers were washed with the deionized water and ethyl alcohol was used to remove the residual NaOH solution.
- Step 2: CNCs coating process
 - Pretreated steel fibers were immersed into the CNCs suspension for 1 h, and then dried in an oven at 40 °C for 24 h.

SEM observation

- Pristine steel fibers: the surface is smooth
- CNCs-coated steel fibers: CNCs particles are well coated and uniformly covered on surfaces.

Pristine steel fibers

CNCs-coated steel fibers

EDS observations

- Pristine steel fibers: only 8.17% oxygen is detected on the surface.
- CNCs-coated steel fibers: the oxygen content is increased to 26.16%.
- The increased oxygen is from hydroxyl groups in CNCs.

Pristine steel fibers

Plenty of –OH groups from CNCs are grafted on surface of steel fibers

CNCs-coated steel fibers

Contact angle results

- Pristine steel fibers: the contact angle is 71.9°.
- CNCs-coated steel fibers: the contact angle is 54.5°.
- CNCs are hydrophilic, improve the hydrophilicity of steel fibers.

The improvement of the hydrophilicity of the steel fiber surface is expected to densify ITZ of the fiber and cement matrix

Preliminary determination of CNCs concentration

- The flow index (n) is an indicator of CNCs agglomeration [1], which is determined by Herschel Bulkley model.
- As CNCs concentration is above 1.0%, the CNCs particles start to agglomerate in tap water.
- The preliminary threshold concentration of CNCs is 1.0%.

[1] Cao, Y. (2016). The relationship between cellulose nanocrystal dispersion and strength. Note: K is the consistency and n is the flow index.

UHPC mixture design

- UHPC mixture design is shown in the table (kg/m³)
- Control is the UHPC with pristine steel fibers.
- CSF is the UHPC with CNCs-coated steel fibers.

Mixture	Cement	Slag	River sand	HRWR	Water	PSF	CSF	CNCs
Control	459.0	633.9	965.4	8.0	248.1	156.0	-	0
0.5CSF	459.0	633.9	965.4	8.0	248.1	-	156.0	2.5
1.0CSF	459.0	633.9	965.4	8.0	248.1	-	156.0	5.0
1.5CSF	459.0	633.9	965.4	8.0	248.1	-	156.0	7.5

Note: HRWR is high-range water reducer; PSF is pristine steel fibers; CSF is CNCs-coated steel fibers.

e.g., 0.5CSF represents the mixture with the steel fibers treated by CNCs suspension at 0.5% concentration.

Workability

- CNCs-coated steel fibers reduces the flowability and increases the air content of UHPC mixtures
- Mechanisms:
 - The CNCs prone to absorb free water which reduces the water for lubrication.
 - The agglomeration of CNCs-coated steel fibers traps the air voids, thus increasing the air contents (especially for 1.5CSF).

Mechanical properties

- As the concentration of CNCs suspension increases, the mechanical properties first increase and then decrease.
- The optimal concentration of CNCs coating suspension is validated to be 1.0%.

Enhancement mechanism: physical interlock (micro)

- Pristine steel fibers: the average roughness is 5.7 nm.
- CNCs-coated steel fibers: the average roughness is 20.1 nm.
- The increased average roughness of steel fiber surface increases the mechanical interlock, improve the bonding between fibers and matrix.

Enhancement mechanism: chemical reaction (micro)

- The CNCs-coating film promotes and accelerates the hydration.
- Mechanism:
 - The -OH group on CNCs-coated steel fibers reacts with Si²⁺ ions and Ca²⁺ ions to form more C-S-H gel in the ITZ [1].

Interfacial transition zone (ITZ) analysis (micro)

- Qualitative analysis SEM observation
 - The ITZ between CNCs-coated steel fiber and matrix is denser than the ITZ between pristine steel fiber and matrix.
- Quantitative analysis Nanoindentation
 - More HD C-S-H and UHD C-S-H phase as well as less pores are found in the ITZ between CNCs-coated steel fiber and matrix.

Bonding between fiber and matrix

- The CNCs-coating film increases the fiber pull-out force and energy.
- Mechanism:
 - Increased surface roughness
 - > Densified interfacial transition zone due to the chemical reaction

Strength reduced as bonding is improved?

• Both compressive strength and flexural properties reduced when CNCs suspension concentration is great than 1%.

Why strength reduced?

- When the concentration of CNCs suspension exceeds 1.0%, the fiber dispersion and orientation coefficient are significantly reduced.
- The agglomeration of CNCs-coated steel fibers leads to the reduction of the mechanical strength of UHPC mixtures.

Conclusions

- Rheological properties of CNCs coating suspension can be used to preliminarily determine the threshold CNCs concentration.
- The microscale characterization, including SEM-EDS, AFM, FTIR, and contact angle, proved CNCs is well coated on steel fiber surface.
- Steel fibers treated by CNCs suspension with optimum concentration of 1% enhances mechanical performance of UHPC due to the promoted hydration and increased bond performance between steel fibers and matrix.
- Steel fibers treated by CNCs suspension with greater than 1% reduces mechanical performance of UHPC due to agglomeration of steel fibers.

Acknowledgement

• Graduate students

Jiang Du

Yuhuan Wang

• Sponsors:

National Science Foundation

U.S. Army

Thanks!

weina.meng@stevens.edu

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE