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Background

= What is chloride-induced corrosion and why it Is important to investigate?
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Background

= \When a sufficient concentration of chlorides reaches the surface of the
embedded reinforcing bars, chloride-induced corrosion iIs initiated.




Chloride Binding

Irrespective of how chlorides enter the concrete, chlorides can exist in concrete
In two forms: Free and bound chlorides.

@ Free

@ Physically-Bound

@ Chemically-Bound




Chloride Binding

What is chloride binding?

Chlorides 1ons can be physically adsorbed onto the surface of cement

hydrates, especially (C—S—H) and can chemically bind to form Friedel’s salt
(CI-AFm) (C3A.CaCl2.10H20).
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Disassocliation of Bound Chloride

Under certain circumstances (carbonation, sulfate attack, acid attack) and as a
result of a drop in the pH of the concrete, bound chlorides can disassociate from
the hydration products, leading to an increased risk of corrosion.

‘ »

@ Free

@ Physically-Bound

Q Chemically-Bound

Carbonation S Sulfate attack



Isassoclation of Bound Chloride

= What Is disassociation of bound chloride (Chloride Desorption)?

= The process by which the chlorides separate from the concrete matrix and
become free ions in the pore water within the concrete.




Disassociation of Bound Chloride

= The disassociation of bound chlorides Is an unfavorable mechanism because
It Increases available chloride 1on concentration , leading to an increased risk

of corrosion.

= We hypothesis that cementitious systems that develop a strong bond with
chlorides are more durable in low-pH and release fewer chlorides into the

concrete pore solution.
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Investigate the kinetics of chloride desorption mechanisms 1

Assess Impacts of pH reduction on chloride disassociation 1

© 06

Evaluate the impact of binder salt type on chloride desorption}

11



Methodology: Experimental Design

Tests
Cementitious Salt Solution and Samples Chloride Analvtical Test
Materials Concentration Preparation Measurement Tests y
Type I/11 i Disk-shaped || Chloride binding
ASTM C150 NaCl molds test XRD
GGBF — CaClz W/C=0.4 - Reduction of pH TGA
SASTM C989 T
- MgCl2 56 days curin i oride H Monitorin
| / ; desorption test P :

Visual
observation
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Methodology: Sample Preparation

= Materials: Type I/11 cement and slag (25% and 50%).
= Curing inside an environmental chamber at 25°C and RH of 95% for 56 d.

Sio, ALO, Fe0, CaO MgO SO, NaO K,0 LOI
OPC 1924 380 275 5905 150 249 017 060 9.90

Slag 31.40 15.70 0.40 37.70 8.60 2.50 — — 0.60

= Reagent-grade solids: NaCl, CaCl,, and MgCl,. Exposure solutions at Six
concentrations. 0.1, 0.3, 0.5, 0.7, 1, and 2 mol/L.

= Nitric acid

(1 M acid solutions was used to reduce pH)
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Methodology: Equipment




Methodology: Chloride Binding

Sall\fa'lc'g/lpe Preparing exposure solutions Titration Result
Cl, i i

Stock Solution (2M)

Chloride binding

U e
) (I O O O chlorite .
/ \ / \ / \ / \ / \ solution
PR P P P R - c man
- o - - - e

14 days exposure
X2 replicates

[C,—C, |xV x35.45

Bound Chlorides = -
(mg Cl/ g paste) paste
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Methodology: Chloride Desorption

Chloride Binding pH Measurement Titration Result

( ] ( ] ( ] ) 60ml
N\ 7_{ VA A gg:gtriigﬁ
{-J {-J ‘-J {-J {Aj C, (mol/l)

vo weeks exposure to salt solution

Stock Solution (2M)
Chloride Desorption o desed L | —
— e — — ﬂ |
- ) P C4 (mol/l)
Nitric Acid 1M “J {-J Pﬂﬁ‘ﬂh
+5 ml +10 ml +15 ml +20 ml +25 ml
N HNO, HNO, HNO, HNO, HNO, CI (Cd — Cf ) va X 3445
Two weeks exposure to acid + salt solution breteased m
Acid dry
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Methodology: Chloride Desorption

Binding Test




Results: Chloride Binding

90 90

T A gy, | A Mg, Slag 25% | A Mgl Slag 50%
80 e cacl 801 e cacl, ' 801 e cacl,
20 ® MNaCl B 70] ® Naci 70] ® Nacl A

| — Fitted Langmuir isotherm | = Fitted Langmuir isotherm | = Fitted Langmuir isotherm °
60 60 60 -

50
40+
30+
20+

Bound chlorides (mg/g paste)
Bound chlorides (mg/g paste)
Bound chlorides (mg/g paste)

10 - 10 10
0 — —r T [ T ' " [ ‘"t "t ‘"t [ T T T T O LA e B L S B R R R 0‘ T .' — T T T T " T T T T T T
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Free chloride concentration at equilibrium (M) Free chloride concentration at equilibrium (M) Free chloride concentration at equilibrium (M)
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Results: Chloride Binding

= \Which solutions had the lowest and highest chloride binding capacity?

MgCl2 showed higher binding, in the decreasing order of MgCl2> CaCl2> NaCl.

= pH of brine solution (NaCl has pH of >12 ) which impacts the solubility of
Friedel's salt (chemical chloride binding) formation compared to CaCl2 and
MgClo.

= Cain CaClz2 increase Ca/Si ratio in C-S-H, enhancing binding of chloride.

= Exposure to MgCl2 resulted in formation of M-S-H, increasing porosity of the
pastes.
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Results: Chloride Binding

= \Which pastes had the lowest and highest chloride binding capacity?

Slag Is most favorable, in the decreasing order of slag50% > slag25% > OPC.

1) The formation of more C-S-H

11) Presence of higher Al203 leading to formation of higher Afm.
1i1) The formation of higher Friedel's salt.
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Results: Phase Composition Before Exposure

100 0.00
CH CH .
XRDJ I
EC cH C,S CH CHCH CH 96-_ 7 +—0.02
94 -
> e\;, 92- - 004 O
= & 90+ S
2 9 . O]
= st 56| 8 gg- L 0.06 5
86 -
844 — opC A Lo0.08
MF \
OPC 6| = = SG25 -|
| = =sG50
I ' I ' I ' I ' I ' I ' I 80 i I i I T I T T T _0.10
10 20 30 40 50 60 70 0 100 200 300 400 500

2theta (degrees) Temperature (°C)

The XRD patterns of hydrated pastes. (b) Mass loss and DTG curves of hydrated pastes (E:
Ettringite, C: C4AF, M: Monocarbonate, F: Ferrite, CH: portlandite, Cc: Calcite, C2S: Belite ).
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Results: Phase Composition After Exposure to Brine Solutions

Intensity (n.u.)
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Results: Phase Composition After Exposure to Brine Solutions

0.00 0.00
-0.05- 0.05 -
-0.10- —-0.10-
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Results: Phase Composition After Exposure to Brine Solutions

Paste Salt Cl- Temperature MH2o  Mrs (%)
. The Mass fraC tiOn 0 f system type concentration (M) Range (°C) (%)
, , , OPC NaCl 0.7 270-390 0.56 3.04
Friedel’s salt in paste 2 240-390 0.8 4.14
: CaCly 0.7 270-380 0.6 3.1
samples. 2 270-380 0.66 3.41
MgCl; 0.7 355-410 0.84 4.39
M. 2 340-400 1.6 5.89
Mg, = 6M H,0
H,0 SG25 NaCl 0.7 270-390 0.77 4.01
2 260-390 0.97 5.04
Mg IS the mass fraction of Friedel's salt CaCl; 0.7 270-390 0.77 4.01
My.o IS the mass loss (wt. %) of the main 2 260-400 0.9 4.69
layer of water obtained from the TGA test, MgCl2 0.7 350-410 1.71 8.88
Mg molar mass of Friedel's salt 2 ) ) )
(561.3 g/mol) SG50 NaCl 0.7 280-410 067 349
M, .o molar mass of water 5 960-400 18 6.63
(18.02 g/mol) CaCl; 0.7 270-400 0.81 4.23
2 250-410 1.13 5.88
MgCl; 0.7 330-410 1.39 7.21

2 260-410 2.48 12.89
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Results: Evolution of pH after adding different volumes of acid

For a fully carbonated concrete, the pH range is around 9.
Lower than that barley can be found in the real case scenarios!
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Results: XRD & TGA (Before Exposure to Salt Solutions)

= The incorporation of slag resulted in the highest amount of Friedel’s salt among

the all binders.

Intensity

il

Jm\

ikt www " F
J\

CH

B

MgCIz 2M

l
hertuly Wm W‘ (N‘y W\w'w«w "f Ww M*WWJ er Wi "LMNY-MWWW P Wt A g

b

Fs

M

(\ E

cc CH

CH C,

CH CH

E

MgCl2 0.7M

l | W‘ 41 MA J"‘uw,ﬂ f\
it ! it i it AR L o, WV»MMM oAbt e s s

) CaCl2 2M
J M CaCl2 0.7M
W

NaCl 0.7M

SOND LS

"1 T 7T T1T 71

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

LI B S s N O B

2theta (degrees)

T

T

LI

4 | f“ E B MgCl:2M
J\M \wwwwmﬁ\w”m‘\w-\wﬂ” H"WWLMW M‘lm"m My X\N Mt rssly W"' W St wgmlv'«‘mwm

Intensity

B

B
i | “ | MgCl2 0.7M
JM])W"MM LM\W"\MWM VWW’MMW%M\'WW WJ'K‘/‘W\lw‘f/‘r'wlw»«JKHI‘N“'W’VMMwwwvv,wiwww’hhwwm Fhtaon A el mgf: 2»-»«9»«»« -

CaCl2 2M

CaCl2 0.7M
NaCl 2M

H
Fs CH

E Cc
E CH, CSE CH CH NaCl 0.7M

I I I I I I I I I I

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

2theta (degrees)

26



Results: Chloride Desorption

* The amount of measured free chloride after pH reduction Increased
compared to the samples without acid, regardless of binder and cation types.
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Results: Chloride Desorption

Percentage of released bound chloride: The bound chloride content before acid
addition was compared to those measured after adding acid.

NaCl CaCl: MgCl:
OPC
90% 92% 86%
Slag 90% 72% 58%

Release of bound chloride at pH=9
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Results: Visual Inspection

Cl+acid

o CI solution Ca(NO,),
+
© Na NaNO,(aq) Porous
silicate Hydrogel
Corroded hydrate layer

Paste

paste
sample

layer

Neat paste
layer

(a) (b) (¢)
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Results: influence of GGBFS on pH, chloride binding, and desorption

Released bound chloride

pH Total bound chloride
(at 5 ml and 10 ml)
SG25 compared to OPC | 1 |
SG50 compared to OPC | 1 l

Depth of acid attack

/ Depth of absorbed
chlorides
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Conclusion

= Chloride desorption phenomenon should be considered in the service life
modelling of concrete structure.

= Incorporation of slag inhibited chloride desorption and led to the retention of
more bound chlorides when the pH decreased.

* Increased slag replacement levels reduced the released bound chloride
percentage, particularly in MgCl2 and CaClz solutions compared to OPC.

* The chloride desorption in blended pastes was influenced by the cation in the
order
Mg > Ca > Na.
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Limitation of Study

= Using pure salt solutions
» Using dried paste samples

Ongoin

= Commercial b
= Wet—dry or f
= Incorporati
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