

Acknowledgment

The American Concrete Institute Foundation supported this research under grant number P0042.

We thank our advisory team and ACI-365 committee members for endorsing this project.

Thanks to the Slag Cement Association for the recognition and their generosity in providing me with a travel grant.

Table of Contents

Introduction

- Background
- Literature Review
- Problem Statement
- Objectives

Methodology

- Materials
- Sample Preparation
- Test Procedures

Results

- Chloride Binding
- Chloride Desorption
- Analytical Tests

Conclusion

- Main Findings
- Proposed Mechanism
- Limitations
- Future Works

Background

What is chloride-induced corrosion and why it is important to investigate?

Infrastructures card 2021: Chloride-induced corrosion afflicts more than 7.5% of the concrete bridges in the United States.

Federal Highway Administration (FHWA): The cost of corrosion to concrete bridges is \$10 billion/year.

Background

• When a sufficient concentration of chlorides reaches the surface of the embedded reinforcing bars, **chloride-induced corrosion** is initiated.

Chloride Binding

Irrespective of how chlorides enter the concrete, chlorides can exist in concrete in two forms: Free and bound chlorides.

Chloride Binding

What is chloride binding?

Chlorides ions can be **physically** adsorbed onto the surface of cement hydrates, especially (C–S–H) and can **chemically** bind to form **Friedel's salt** (Cl-AFm) (C3A.CaCl2.10H2O).

- Cl Free
- Cl Physically-Bound
- Cl Chemically-Bound

Disassociation of Bound Chloride

Under certain circumstances (carbonation, sulfate attack, acid attack) and as a result of a drop in the pH of the concrete, bound chlorides can disassociate from the hydration products, leading to an increased risk of corrosion.

Disassociation of Bound Chloride

- What is disassociation of bound chloride (Chloride Desorption)?
- The process by which the chlorides separate from the concrete matrix and become free ions in the pore water within the concrete.

Disassociation of Bound Chloride

■ The disassociation of bound chlorides is an unfavorable mechanism because it increases available chloride ion concentration, leading to an increased risk of corrosion.

• We hypothesis that cementitious systems that develop a strong bond with chlorides are more durable in low-pH and release fewer chlorides into the concrete pore solution.

Objectives

1 Investigate the kinetics of chloride desorption mechanisms

2 Assess impacts of pH reduction on chloride disassociation

Evaluate the impact of binder salt type on chloride desorption

Methodology: Experimental Design

Methodology: Sample Preparation

- Materials: Type I/II cement and slag (25% and 50%).
- Curing inside an environmental chamber at 25°C and RH of 95% for 56 d.

	SiO_2	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	LOI
OPC	19.24	3.80	2.75	59.05	1.50	2.49	0.17	0.60	9.90
Slag	31.40	15.70	0.40	37.70	8.60	2.50	_	_	0.60

- Reagent-grade solids: NaCl, CaCl₂, and MgCl₂. Exposure solutions at six concentrations. 0.1, 0.3, 0.5, 0.7, 1, and 2 mol/L.
- Nitric acid
 (1 M acid solutions was used to reduce pH)

Methodology: Equipment

Methodology: Chloride Binding

Result

 $C_i \text{ (mol/l)}$

 C_f (mol/l)

Methodology: Chloride Desorption

Methodology: Chloride Desorption

Results: Chloride Binding

Results: Chloride Binding

• Which solutions had the lowest and highest chloride binding capacity?

MgCl₂ showed higher binding, in the decreasing order of MgCl₂> CaCl₂> NaCl.

- pH of brine solution (NaCl has pH of >12) which impacts the solubility of Friedel's salt (chemical chloride binding) formation compared to CaCl2 and MgCl2.
- Ca in CaCl2 increase Ca/Si ratio in C-S-H, enhancing binding of chloride.
- Exposure to MgCl₂ resulted in formation of M-S-H, increasing porosity of the pastes.

Results: Chloride Binding

• Which pastes had the lowest and highest chloride binding capacity?

Slag is most favorable, in the decreasing order of slag50% > slag25% > OPC.

- i) The formation of more C-S-H
- ii) Presence of higher Al2O3 leading to formation of higher Afm.
- iii) The formation of higher Friedel's salt.

Results: Phase Composition <u>Before</u> Exposure

The XRD patterns of hydrated pastes. (b) Mass loss and DTG curves of hydrated pastes (E: Ettringite, C: C4AF, M: Monocarbonate, F: Ferrite, CH: portlandite, Cc: Calcite, C2S: Belite).

Results: Phase Composition After Exposure to Brine Solutions

Results: Phase Composition After Exposure to Brine Solutions

Results: Phase Composition After Exposure to Brine Solutions

The mass fraction of Friedel's salt in paste samples:

$$m_{Fs} = \frac{M_{Fs}}{6M_{H_2O}} m_{H_2O}$$

 m_{Fs} is the mass fraction of Friedel's salt m_{H^2O} is the mass loss (wt. %) of the main layer of water obtained from the TGA test, M_{FS} molar mass of Friedel's salt (561.3 g/mol) M_{H^2O} molar mass of water (18.02 g/mol)

Paste	Salt	Cl ⁻	Temperature	m _{H2O}	m _{Fs} (%)
system	type	concentration (M)	Range (°C)	(%)	
OPC	NaCl	0.7	270-390	0.56	3.04
		2	240-390	0.8	4.14
	$CaCl_2$	0.7	270-380	0.6	3.1
		2	270-380	0.66	3.41
	$MgCl_2$	0.7	355-410	0.84	4.39
		2	340-400	1.6	5.89
SG25	NaCl	0.7	270-390	0.77	4.01
		2	260-390	0.97	5.04
	$CaCl_2$	0.7	270-390	0.77	4.01
		2	260-400	0.9	4.69
	$MgCl_2$	0.7	350-410	1.71	8.88
		2	-	-	-
SG50	NaCl	0.7	280-410	0.67	3.49
		2	260-400	1.28	6.63
	$CaCl_2$	0.7	270-400	0.81	4.23
		2	250-410	1.13	5.88
	$MgCl_2$	0.7	330-410	1.39	7.21
	-	2	260-410	2.48	12.89
					24

Results: Evolution of pH after adding different volumes of acid

For a fully carbonated concrete, the pH range is around 9. Lower than that barley can be found in the real case scenarios!

Results: XRD & TGA (Before Exposure to Salt Solutions)

■ The incorporation of **slag** resulted in the highest amount of Friedel's salt among the all binders.

Results: Chloride Desorption

■ The amount of measured free chloride after pH reduction increased compared to the samples without acid, regardless of binder and cation types.

Results: Chloride Desorption

Percentage of released bound chloride: The bound chloride content **before** acid addition was compared to those measured **after** adding acid.

Release of bound chloride at pH=9

Results: Visual Inspection

Results: influence of GGBFS on pH, chloride binding, and desorption

	ьП	Total bound chloride	Released bound chloride	
	pН	Total bound chiloride	(at 5 ml and 10 ml)	
SG25 compared to OPC	\downarrow	<u></u>	↓	
SG50 compared to OPC	\downarrow	↑	\	

Conclusion

- Chloride desorption phenomenon should be considered in the service life modelling of concrete structure.
- Incorporation of slag inhibited chloride desorption and led to the retention of more bound chlorides when the pH decreased.
- Increased slag replacement levels reduced the released bound chloride percentage, particularly in MgCl₂ and CaCl₂ solutions compared to OPC.
- The chloride desorption in blended pastes was influenced by the cation in the order

Mg > Ca > Na.

Limitation of Study

- Using pure salt solutions
- Using dried paste samples

Ongoing Work

- Commercial brine solutions
- Wet—dry or freeze-thaw cycles
- Incorporating corrosion inhibitors

References

- 1- Avet, F., and Scrivener, K. (2020). "Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC3)" Cement and Concrete Research, 131, 106031.
- 2- Chang, H. (2017). "Chloride binding capacity of pastes influenced by carbonation under three conditions" Cement and Concrete Composites, 84, 1-9.
- 3- Chu, H., Wang, T., Guo, M.-Z., Zhu, Z., Jiang, L., Pan, C., and Liu, T. (2019a). "Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment" Construction and Building Materials, 194, 247-256.
- 4- De Weerdt, K., Colombo, A., Coppola, L., Justnes, H., and Geiker, M. R. (2015). "Impact of the associated cation on chloride binding of Portland cement paste" Cement and Concrete Research, 68, 196-202.
- 5- Zhu, Q., Jiang, L., Chen, Y., Xu, J., and Mo, L. (2012). "Effect of chloride salt type on chloride binding behavior of concrete" Construction and Building Materials, 37, 512-517.
- 6- Teymouri, M., Shakouri, M., and Vaddey, N. P. (2021). "pH-dependent chloride desorption isotherms of Portland cement paste" Construction and Building Materials, 312, 125415.

Thanks For Listening!

Questions?
Teymouri@colostate.edu

Paper 1

Paper 2