Sustainable CSA Cement-based Precast Concrete Tunnel Lining Reinforced with GFRP Bars: Challenges and Opportunities

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Zila Rinaldi

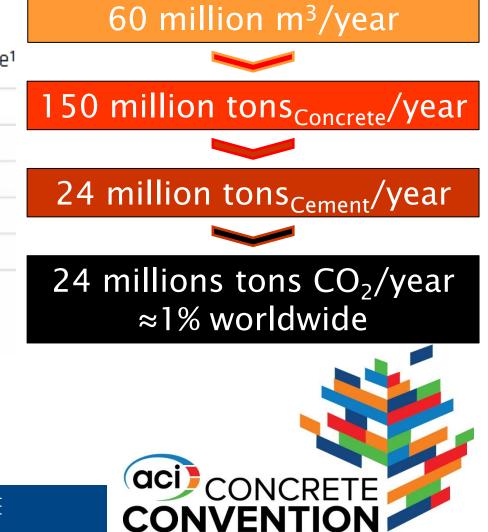
CONCRETE

CONVENTIO

aci

WHY AIM FOR THE CSA BINDERS IN TUNNELLING FIELD?

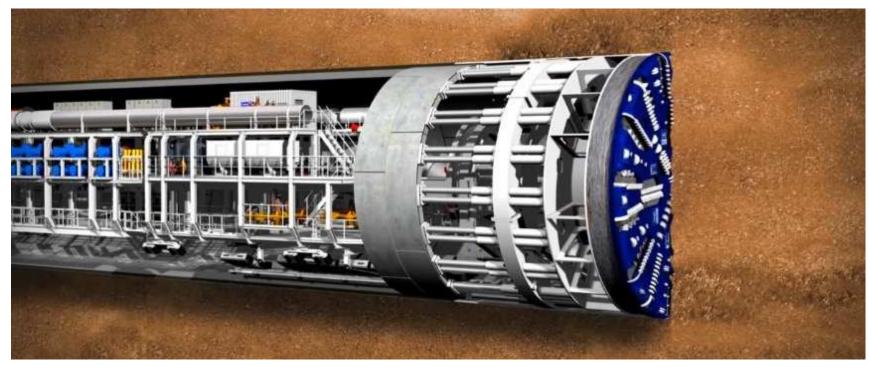
5,000 kilometers


An average of over

of tunnels are constructed each year around the world.¹

Approximately

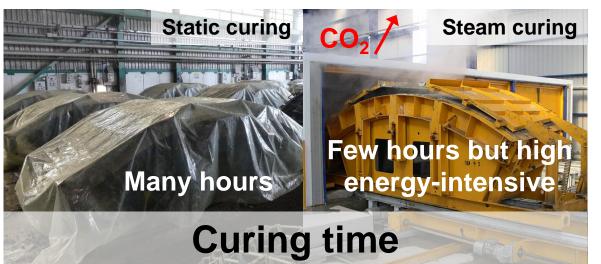
Euros are spent per year in tunnel and underground construction worldwide.¹



¹ Source: Internantional Tunnelling Association (ITA), Tunnel Market Survey 2016

Increasing use of mechanized tunnelling

Tunnel boring machines are very advanced equipment used as an alternative to drilling and blasting through rock and conventional mechanical excavation in soft ground. Mechanized tunneling has become more important with the rapid growth and expansion of underground construction in recent years.



Production of the precast segments

Work-site storage area: can be a problem?

FRC Tunneling Engineering Research Cent

Main advantages...

- More sustainable production process (lower firing temperature)
- Development of high mechanical strengths in short-term
- Low shrinkage

Fast static-curing Steam-curing 4÷5 hours

Speed up demoulding

Increase in production per workshift and fast clearing of the storage areas

No

...connected to mechanized excavation

Installation: 7 days for the required strength (instead of 28 days)

Concrete mix design based on CSA cement

Main disadvantages...

...solved in mechanized excavation

- Low workability

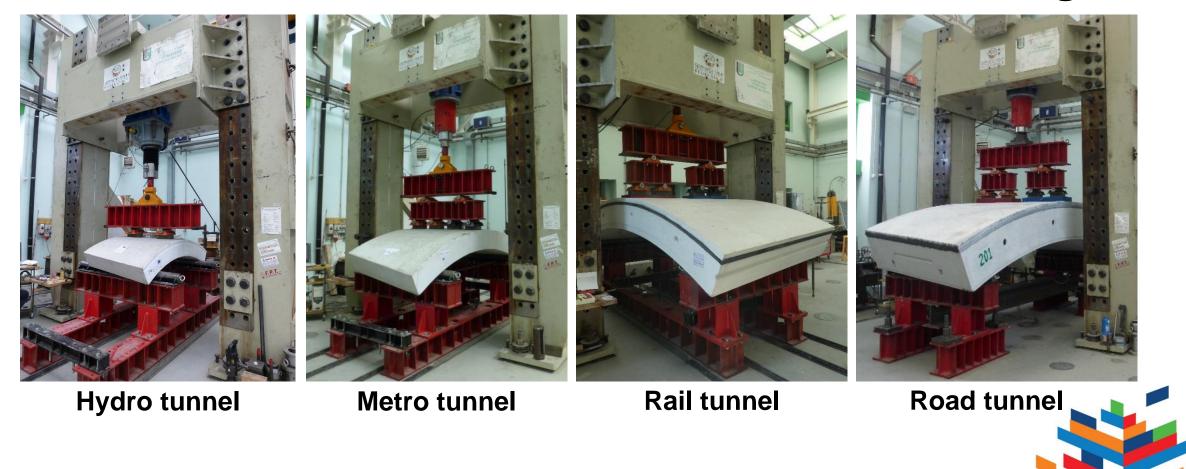
Sufficient for the prefabrication

- Low pH value

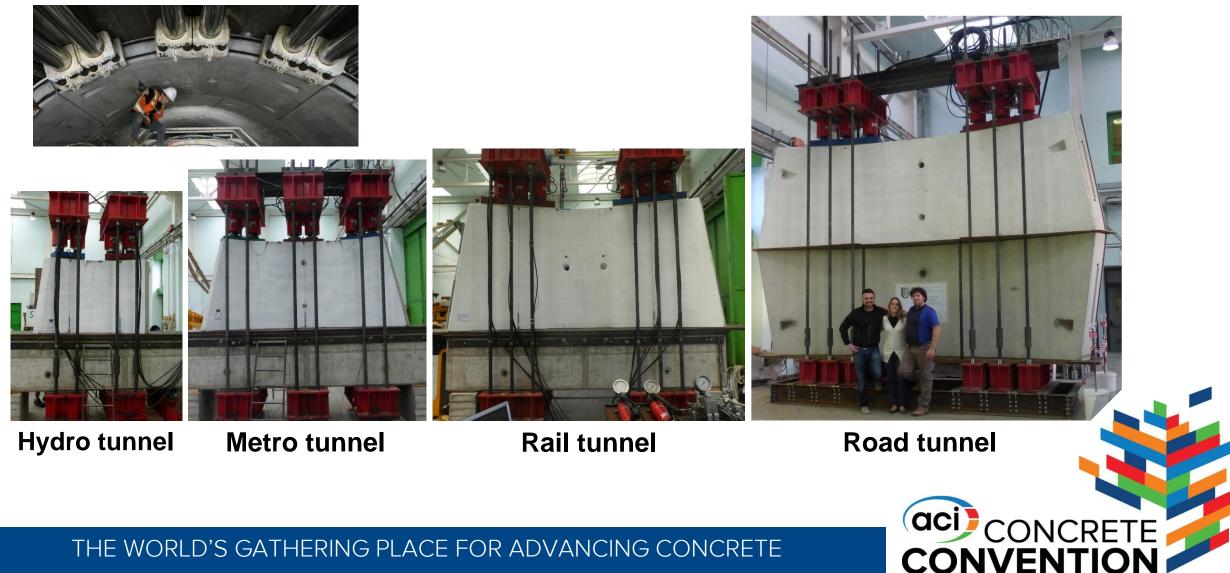
New GFRP closed-ring reinforcement

Full-scale test with several GFRP dimensions/configurations

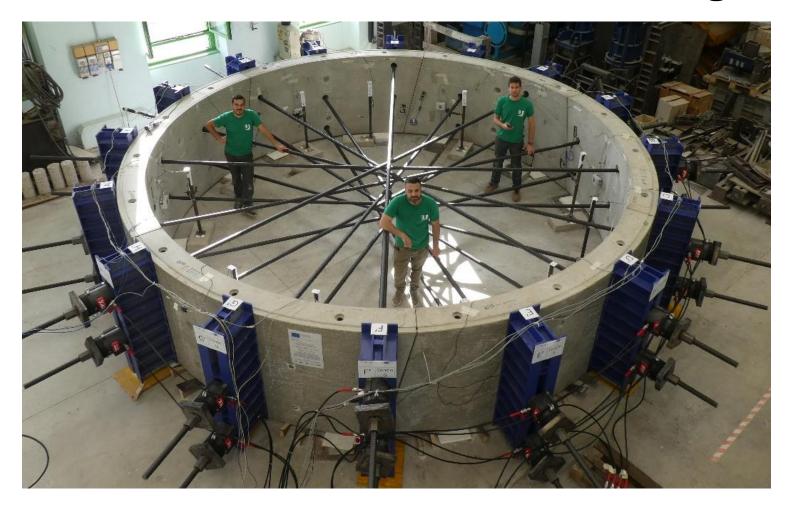
Hydro tunnel


CONCRETE CONCRETE

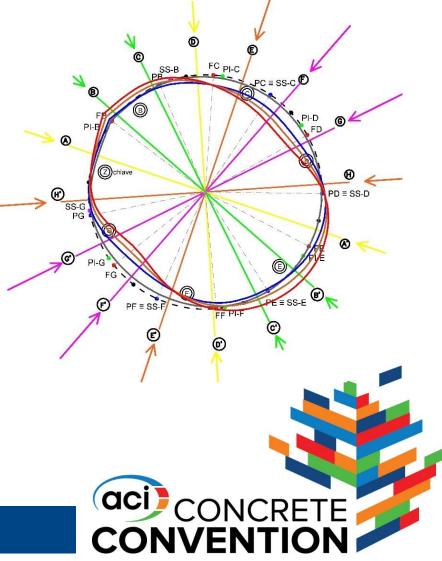
GFRP closed-ring reinforcement


(aci) CONCRETE CONVENTION

Full-scale test on several tunnel dimensions: Bending test

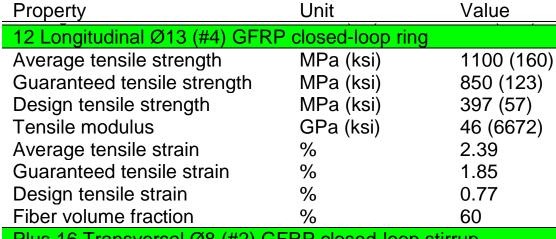


Full-scale test on several tunnel dimensions: TBM thrust test



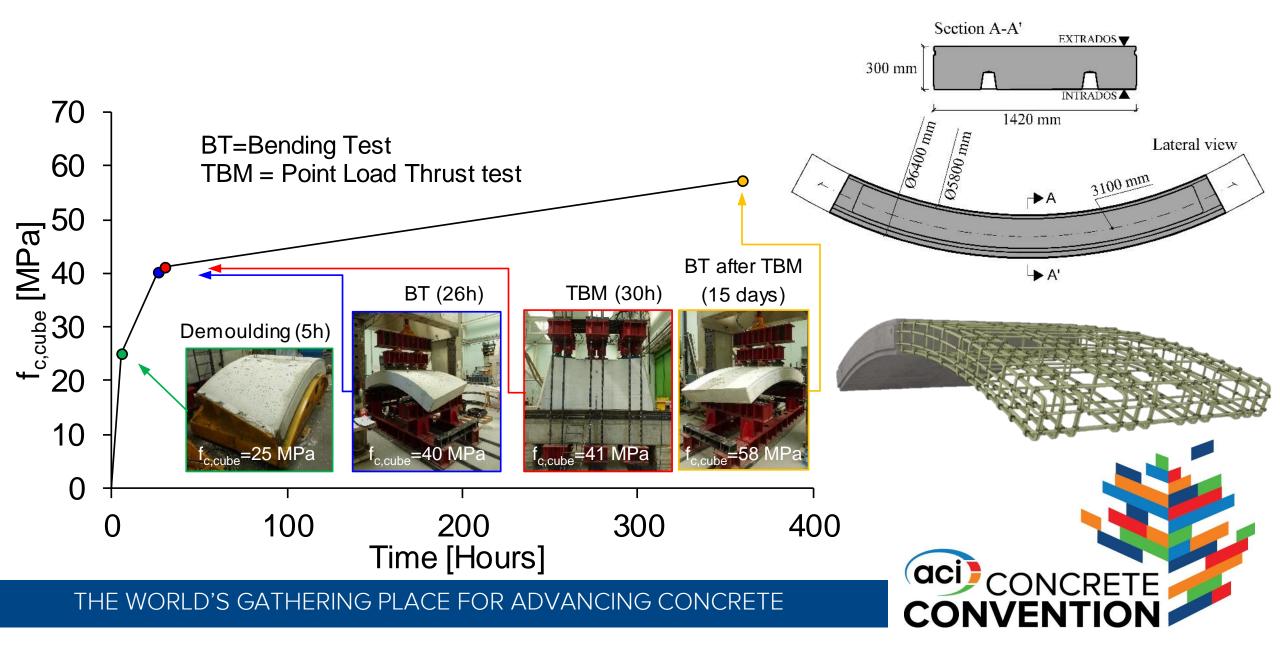
Full-scale test on metro tunnel ring: Earth pressure

Experimental program: Concrete Mix design & Reinforcement

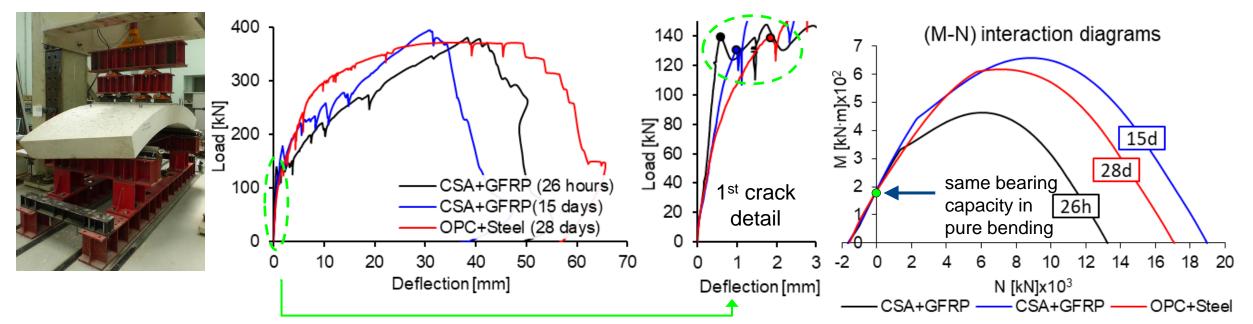

Mix design	Unit	20°C	Ref.			
Binder (CSA Next-SL05)*	kg/m³	380	380			
Sand	kg/m³	892	892			
Rubble	kg/m ³	445	445			
Gravel	kg/m ³	503	503			
Additive CC39/P22	%	0.7	0.7			
Water	l∕m³	160	160			
w/c	-	0.42	0.45			
Workability loss (Consistency	/ class: S	54)				
to	mm	195	200			
t30	mm	190	200			
t60	mm	180	190			

* Replaces CEM IV/A(PV) 42.5N SR pozzolanic cement, normally adopted to cast tunnel segments.

Buzzi Unicem


ETA13/0419

Plus 16 Transversal Ø8 (#2) GFRP closed-loop stirrup



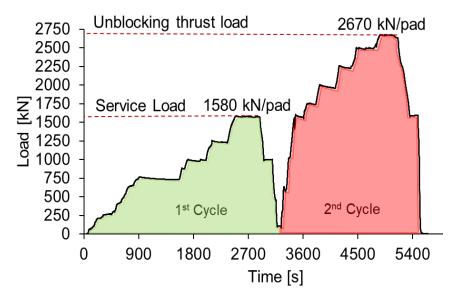
Experimental program: three-point bending test

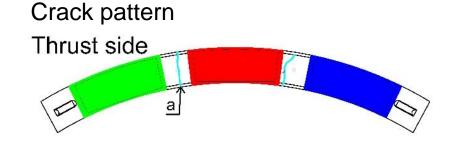
26 hours after segment casting (compare to 28 days of the traditional solution)

Property → Cross-area Reinforcement		Concrete		Exp. Load		Bending moment		nent						
	Height x width	Туре	Longitudinal	Tranavaraal (atirruna)	f _{ym}	f _{fum} (a)	Туре	f _{cm,cube}	F _{1st crack}	F_{max}	M _{u,exp}	M _{u,ana}	ΔM	
Solution ↓	Curing time	[cm ²]	[-]	[sup+inf]	Transversal (stirrups)	[MPa]	[MPa]	[-]	[MPa]	[kN]	[kN]	[kN·m]	[kN·m]	[%]
OPC + Steel	28 days	30x142 C	Steel	(12+12) Ø12 [#4]		510	-	OPC	48	137	373	186	188	-1.0
CSA + GFRP (I)	26 hours		GFRP	12 rings Ø13 [#4]	[#2] Ø8/20	-	524	CSA	40	140	380	190	187	+1.6
CSA + GFRP (II)	15 days		GFRP	12 rings Ø13 [#4]		-	524	CSA	58	130	395	197	190	+3.9
Note: $a^{(a)}$ f f (1)	0/0.4													

Note: ^{a)} $f_{fum} = f_{fm}/\gamma_{f,\emptyset} = 1100/2.1$

Experimental program: TBM point load test

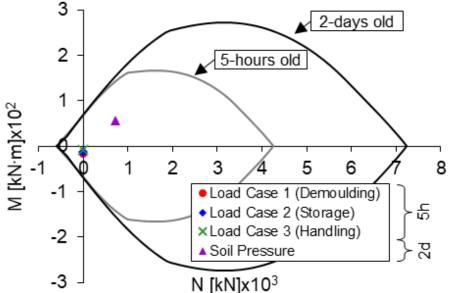

30 hours after segment casting (compare to 28 days of the traditional solution)


	Admissible		
	Service Load Unloading		residual
	(1580 kN/pad)	(100 kN/pad)	crack width
	Maximum crack width	Residual crack width	
Solution ↓	[mm]	[mm]	[mm]
OPC + Steel	0.10	0.10	0.15
CSA + GFRP	0.42	0.15	0.50

2 nd cycle:	TBM unblocking thrust	(Exceptional load)	A . I	
	Max TBM capacity Unloading		Admissible residual	
	(2670 kN/pad)	(0 kN)	crack width	
	Maximum crack width	Residual crack width		
Solution ↓	[mm]	[mm]	[mm]	
OPC + Steel	0.25	0.10	0.15	
CSA + GFRP	0.80	0.15	0.50	

ERC

Tunneling Engineering Research Centre



Case study

Summary of required design checks and factors for transient and final stages (ULS) according to ACI544.7R-16.

		β	(MPa)	(<i>k</i> N∙ <i>m</i>)	(<i>kN</i>)	(<i>kN</i>)	(<i>kN</i>)
1	Demoulding	2.0	15 (10)	-16.7	0	47.8	
2	Storage ^{a)}	-	15 (10)	-13.1	0	106	107
3	Handling	2.0	(5 hours)	-7.3	0	21	
4	Soil pressure (ULS)	-	30 (17) (2 days)	55.8	711	67	135

Load case 1

Note: Transportation phase is neglected for the purpose of using the CSA

- 1) **Speed up** the **production** (4÷5 hours) without any energy-intensive steam-curing process
 - \rightarrow switch from 2 work-shift/day to 4 work-shift/day

2) Reduction of segments stacked waiting for the required strengths → Segments on demand;

- 3) Possibility to establish a work-site full prefabrication (including ad-hoc modify pultrusion process) improving the health and socio-economic aspects tied to the reduction of pollution and traffic congestion of the urban areas.
- (**NO transports by trucks** of the reinforcement cages from the manufacturing plant to the prefabrication one and the segments from the latter to the construction-site)

Università di Roma

CONCRETE

CONVENTIO

THANK YOU

Simone SPAGNUOLO

spagnuolo@ing.uniroma2.it

Sustainable CSA Cement-based Precast Concrete Tunnel Lining Reinforced with GFRP Bars: Challenges and Opportunities