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e Restore and Improve Urban

 Current Infrastructure in the U.S. need
Infrastructure

improved resilience

Q. How do we quantify resiliency in concrete? Champlain Towers South Failure (2021)
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Background: Damage and Fracture Mechanics of Concrete
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Q. Can we develop tough concrete without changing composition?

ﬁ‘\ ARCHITECTED MATERIALS AND
ADDITIVE MANUFACTURING LAB




How Do We Engineer Concrete to Have Damage-Resistance?
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Can we Learn From Nature? Let’s Look at Microarchitecture of Bone
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Schematic Cross-section of Toughening Mechanism.

Human Femur Bone _ _ _
e Cement line — crack interaction

e Cortical bone forms tough outer shell of human femur bone

* Porosity — 3.5% [?], Osteon — 45-65% (3]

1. Nalla, R.K. et al., 2003. Nat. Mater.
2. Renders, et al., 2007. J. Anat.

e Crack deflection through cement line

e Cement lines are 10 times weaker than osteons [4] 3. Vahle et al., 2015. In The Nonhuman Primate in Nonclinical Drug Development

4. Dong et al., 2005, Mol. Cell. Biomech.
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What Are We Trying to Achieve?

Objective.
To engineer the bone-inspired toughening mechanisms in brittle cementitious material

using tubular architecture

Brittle failure in monolithic cast Crack deflection in tubular
architected material
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How Do We Fabricate these Tubular Architected Cementitious Materials?

Direct 3D-printing the Architecture:

Defining Input Geometrical Parameters

Contour Parameters

Printing Speed (F, mm/min)

Generating G-Code from the Contour
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Graded Sinusoidal Toolpath

Elliptical Toolpath

3D-printed tubular architected materials



Hybrid Cast-Additive Manufacturing Process:
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23°C, 14 h 23°C, 7 days 30mm
35% RH 96% RH
w/c=0.275
+
PVA Mold _ R
Part A PartB Cement Water Admixture
Mix Mix (HRWRA & VMA)
3D-Printing of PVA mold Cured Urethane Rubber Mold Tubular Architected Cementitious
Material

*HRWRA — High range water reducing admixture; VMA — Viscosity Modifying agent
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Tubular architected | Cortical Bone
material
Osteons/tube 20 — 50% 45 — 65%!1

porosity (%) Solid Circular 20%, e = 1
o — — - -
Aspect ratio, e = b/c a'
Circular 30%, e=1 Circular 40%, e = 1
40 mm -

Circular 50%, e = 1 Elliptical 40%, e = 2.0

%

1. Vahle et al.,, 2015. In The Nonhuman Primate in Nonclinical Drug Development . 4 o _
2. Keenan, etal., 2017. Am. J. Phys. Anthropol. Elllptlcal 4061 e = 25
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How did We Characterize the Mechanical Response?

*  Modulus of Rupture (MOR) was obtained from Three-point bend test (ASTM C78)
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MOR = —— TR TR W A A -
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neutral axis and second area on moment of the loading plane ! A J

»
>

where, M is applied bending moment, y and I are the position of the

* Fracture Toughness was obtained from Single-edge notched bend test (ASTM E1820)
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Crack Propagation Fracture Toughness, K;. = \/(]el +]pl)E

S
Klzc(l — UZ) & J, = nplApl
E PL™ b(d — ay)

where, Je1 =

Where, A, as the post-peak area under the notched load-displacement curve and n,,; is given by ASTM E1820.
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Tubular Architecture Allow for Step-wise Cracking Toughening Mechanism
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Tubular architecture demonstrated step-wise load-displacement unlike brittle cast

Hypothesis: Step-wise cracking and crack deflection are the toughening mechanisms
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Toughness is Enhanced by Five Folds Without Loss of Strength

Toughness Strength
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* Crack initiation toughness (K,c) and strength (MOR) remain constant with increasing porosity

* While crack propagation toughness (K;) showed increase of 2-5 times from solid to tubular architecture
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How Can We Explain the Results using an Analytical Investigation?

* Effect of tubes on the stress intensity factor and crack path can be Analytical (Single Tube) Analytical (Superimposed tubes)
determined using the Green function formulation

* Muskhelishvili Equations predict stress fields in elastic medium (o,
dyy, and dy, ) as the function of complex potentials, ¢ &

Oxx + Uyy = z[d)l(z) bn; bt) + Cp,(Z, bn; bt)J 14
. ) - 12 m Experimental
Oyy — Oxx T Zny = 2[Z¢ (2, bn, be) + Y (2, by, be)] ﬁ 10 Analytical (Single Tube)
< B Analytical (Superimposed Tubes
* Complex potentials (¢ & 1 ) are the functions of the distribution of f:;o 8 Y (Sup P )
dislocations along crack due to elliptical tube (b,,, b;) 1! C —¢
v o
» Stresses due to crack-tube interactions are superimposed upon the § E 4
stress due to the distribution of dislocation along the arbitrary crack § < 2
w oo
c =20
* Cauchy integral equations, with external stresses (f,,, /;), can be 2 5
solved numerically to determine the stress intensity factors [ ;S
“2 bn(ZO) 72 E
dzo + | 0,(2,20)bn(20) dzo = [,(2) S
Z — ZO E
Z1 Z1 O

j “2 by (20)

. Z— Zo

Z2
dzo + j 01(2,20)be(20) dzo = f(2)
Z1

1. Patton, E.M. and Santare, M.H., 1993. Crack path prediction near an elliptical inclusion. Engineering fracture mechanics.
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Where did the Tubular Architected Cementitious Material land?

e Elliptical 40% showed fracture toughnesss

comparable to granite and glass ceramic

e Circular 40% and Circular 50% showed fracture
toughness close to upper boundary of fiber-

reinforced cement paste
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Fracture Toughness, K, (MPa. m®?)
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Concluding Remarks

* Additive manufacturing can be used in a variety of ways (3DP, hybrid) to architect

materials, and further work on scaling up is necessary

* Exploiting Step-wise crack propagation & crack deflection toughening mechanism

inspired from bone can enhance the fracture toughness by 5 times 1200 -
g iptical 40%
%0800 lliptical 40%
e The improvement in toughnesss-strength trade-off e
_ . . - X X X ¥ ¥ ¥ ¥ J b
was achieved without changing the composition oo g
0 0.1 0.2
(addlng flber) Displacement (mm)
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Thank you, Questions!
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