Mechanics of Tough Cortical Bone-Inspired 3D-Printed

Architected Cement-Based Materials

Shashank Gupta, Reza Moini

April 02, 2023

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Motivation: There is a need for Resilient Civil Infrastructure

- Current Infrastructure in the U.S. need improved resilience
- Restore and Improve Urban
 Infrastructure

Miami Bridge Failure (2018)

Champlain Towers South Failure (2021)

Q. How do we quantify resiliency in concrete?

Background: Damage and Fracture Mechanics of Concrete

Q. Can we develop tough concrete without changing composition?

Adapted from Shah and Ouyang, 1994, Annu. Rev. Mater.

How Do We Engineer Concrete to Have Damage-Resistance?

Can we Learn From Nature? Let's Look at Microarchitecture of Bone

- Cortical bone forms tough outer shell of human femur bone •
- Porosity 3.5% ^[2], Osteon 45-65% ^[3]
- Cement lines are 10 times weaker than osteons ^[4]

- Cement line crack interaction
- Crack deflection through cement line

- 2. Renders, et al., 2007. J. Anat.
- 3. Vahle et al., 2015. In The Nonhuman Primate in Nonclinical Drug Development 4. Dong et al., 2005, Mol. Cell. Biomech.

^{1.} Nalla, R.K. et al., 2003. Nat. Mater.

Objective.

To engineer the bone-inspired toughening mechanisms in brittle cementitious material

using tubular architecture

Brittle failure in monolithic cast

Crack deflection in tubular architected material

How Do We Fabricate these Tubular Architected Cementitious Materials?

Direct 3D-printing the Architecture:

3D-printed tubular architected materials

Parametric Contour

Hybrid Cast-Additive Manufacturing Process:

*HRWRA – High range water reducing admixture; VMA – Viscosity Modifying agent

What Design Parameters go into the Tubular Architecture?

	Tubular architected material	Cortical Bone		• • • • • • • • • • • • • • • • •
Osteons/tube porosity (%)	20 — 50%	45 — 65% ^[1]	Solid	Circular 20%, <i>e</i> = 1
Aspect Ratio	1 - 2.5	1.02 - 2.62 ^[2]		
Aspect ratio, $e = b/a$				
			Circular 30%, <i>e = 1</i>	Circular 40%, <i>e = 1</i>
		*0 mm 40 mm		
		V	Circular 50%, <i>e = 1</i>	Elliptical 40%, <i>e = 2.0</i>
130 mm				

1. Vahle *et al.,* 2015. In The Nonhuman Primate in Nonclinical Drug Development

2. Keenan, et al., 2017. Am. J. Phys. Anthropol.

Elliptical 40%, *e* = 2.5

How did We Characterize the Mechanical Response?

• Modulus of Rupture (MOR) was obtained from Three-point bend test (ASTM C78)

$$MOR = \frac{M \times y}{I}$$

where, M is applied bending moment, y and I are the position of the neutral axis and second area on moment of the loading plane

• Fracture Toughness was obtained from Single-edge notched bend test (ASTM E1820)

Crack Initiation Fracture Toughness, $K_{IC} = \left(\frac{PS}{R^{\frac{1}{2}}W^{\frac{3}{2}}}\right) f(a_0/W)$

Crack Propagation Fracture Toughness,
$$K_{Jc} = \sqrt{(J_{el} + J_{pl})E}$$

where,
$$J_{el} = \frac{K_{lc}^2(1-v^2)}{E} \& J_{pl} = \frac{n_{pl}A_{pl}}{b(d-a_0)}$$

Where, A_{pl} as the post-peak area under the notched load-displacement curve and n_{pl} is given by ASTM E1820.

Tubular Architecture Allow for Step-wise Cracking Toughening Mechanism

- Tubular architecture demonstrated step-wise load-displacement unlike brittle cast
- *Hypothesis:* Step-wise cracking and crack deflection are the toughening mechanisms

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB Δa

Toughness is Enhanced by Five Folds Without Loss of Strength

- Crack initiation toughness (K_{IC}) and strength (MOR) remain constant with increasing porosity
- While crack propagation toughness (K_J) showed increase of 2-5 times from solid to tubular architecture

How Can We Explain the Results using an Analytical Investigation?

- Effect of tubes on the stress intensity factor and crack path can be determined using the Green function formulation
- Muskhelishvili Equations predict stress fields in elastic medium (σ_{xx} , σ_{yy} , and σ_{xy}) as the function of complex potentials, $\phi \& \psi$

 $\sigma_{xx} + \sigma_{yy} = 2[\phi'(z, b_n, b_t) + \overline{\phi'(z, b_n, b_t)}]$

 $\sigma_{yy} - \sigma_{xx} + 2\sigma_{xy} = 2[\bar{z}\phi''(z, b_n, b_t) + \psi'(z, b_n, b_t)]$

- Complex potentials ($\phi \& \psi$) are the functions of the distribution of dislocations along crack due to elliptical tube (b_n , b_t)^[1]
- Stresses due to crack-tube interactions are superimposed upon the stress due to the distribution of dislocation along the arbitrary crack
- Cauchy integral equations, with external stresses (f_n, f_t) , can be solved numerically to determine the stress intensity factors ^[1]

$$\int_{z_1}^{z_2} \frac{b_n(z_0)}{z - z_0} dz_0 + \int_{z_1}^{z_2} \sigma_n(z, z_0) b_n(z_0) dz_0 = f_n(z)$$
$$\int_{z_1}^{z_2} \frac{b_t(z_0)}{z - z_0} dz_0 + \int_{z_1}^{z_2} \sigma_t(z, z_0) b_t(z_0) dz_0 = f_t(z)$$

1. Patton, E.M. and Santare, M.H., 1993. Crack path prediction near an elliptical inclusion. Engineering fracture mechanics.

Where did the Tubular Architected Cementitious Material land?

• Elliptical 40% showed fracture toughnesss comparable to granite and glass ceramic

 Circular 40% and Circular 50% showed fracture toughness close to upper boundary of fiberreinforced cement paste

Concluding Remarks

- Additive manufacturing can be used in a variety of ways (3DP, hybrid) to architect materials, and further work on scaling up is necessary
- Exploiting *Step-wise crack propagation* & *crack deflection* toughening mechanism inspired from bone can enhance the fracture toughness by 5 times
- The improvement in toughnesss-strength trade-off was achieved without changing the composition (adding fiber)

Acknowledgements

 We would like to acknowledge the support for our lab by NSF-Engineering Civil Infrastructure and NSF-Advanced Manufacturing programs of the CMMI.

Thank you, Questions!

