

Sustainable Ultra High-Performance Geopolymer Composite

Jian-Guo Dai¹, Surendra P. Shah²

¹Professor, Department of Civil and Environmental Engineering, Honk Kong Polytechnic University, Hong Kong, China cejgdai@polyu.edu.hk

²Professor, Department of Civil Engineering and Materials Science and Engineering, Director, Center for Advanced Construction Materials, UTA, USA surendra, shah@uta.edu

ACI Spring 2023 Nanotechnology for Concrete with Low Carbon Footprint April 2 - 6, 2023, Hilton San Francisco Union Square, San Francisco, CA

UNIVERSITY OF TEXAS 🖈 ARLINGTON

https://cacm.uta.edu/

How to reduce clinker content?

- Portland cement production contributes 5-7% of the global carbon emissions.
- Almost 1 kg of CO₂ is released for 1kg of cement produced from the decomposition of calcium carbonate and the burning of fossil fuel.

What is geopolymer?

The term 'geopolymer' was first applied to the products of alkaline activation of calcined clays (particularly metakaolin) by Davidovits in the 1970s.

Geopolymer is an alkali-activated binder material containing little or no calcium; often derived from a metakaolin or a fly ash precursor.

UNIVERSITY OF TEXAS

Provis, John L., and Jannie SJ Van Deventer, eds. Alkali activated materials, RILEM (2013).

ARLINGTON

Reaction Mechanism

Provis, John L., and Susan A. Bernal. Annual Review of Materials Research 44 (2014): 299-327.

UHPC with steel fibers

Chemical components and loss on ignition (LOI) values of precursors obtained using XRF

Chemical composition	FA	GGBS	SF
Aluminum oxide	25.80	14.10	0.15
Silicon oxide	52.40	32.10	96.90
Calcium oxide	6.42	44.20	0.53
Ferric oxide	8.40	0.32	0.06
Magnesium oxide	2.27	5.95	1.10
Sulfur trioxide	0.86	1.74	0.12
Titanium dioxide	1.31	0.66	-
Phosphorus oxide	0.66	0.12	0.33
Potassium oxide	1.47	0.42	0.78
Others	0.41	0.39	0.03
LOI (950°C)	3.48	0.26	1.78

Mix design and curing conditions

Mix Design

Mix ID	Precurs	sors		Fine Sand	Activators		Borax	Extra Water	Fiber content (Vol.)*
	FA	GGBS	SF		Na ₂ SiO ₃ – Anhydrous	Waterglass			
F6S4-3%	0.6	0.4	0.084	0.705	0.103	0.153	0.051	0.105	3%
F4S6-3%	0.4	0.6							3%
F2S8-3%	0.2	0.8							3%
F2S8-2%	0.2	0.8							2%
F2S8-4%	0.2	0.8							4%

*Steel fibers (length: 13mm and diameter: 200µm)

Experimental Procedure

Unit: mm

Particle Size Distribution

100 -

Lao, Jian-Cong, et al. Composites Communications 30 (2022): 101081.

Compressive Strength comparison

- \checkmark All mixes had compressive strength higher than 160 MPa.
- ✓ For UHPGC with different FA/GGBS ratios, FA/Slag of 0.25 had highest strength owing to higher alkali activation of GGBS than FA.
- \checkmark Increase in compressive strength with increase in fiber content can be attributed to the strong modulus of steel fibers.

Tensile test results

✓ Tensile strain capacity represents the strain corresponding to the peak stress in the stress-strain curve of UHPGC. The increase in slag content and steel fiber dosage both led to a reduced tensile strain capacity.

✓ Ultimate tensile strength was found to increase with the increase in fly ash content and increase in steel fiber content.

✓ An increase in strain hardening behavior was observed on increase in steel fiber content which was attributed to the increased fiber-bridging force generated from the higher steel fiber content.

Microscopic examination of UHPGC matrices

BSE images of matrices (a) F6S4 (b) F4S6 (c) F2S8

- ✓ A denser matrix with lower flaws was observed with an increase in slag content due to improved space-filling ability of the reaction product in the blended FA/GGBS system.
- ✓ Mix with higher fly ash content had more flaws which explains the lower UHPGC strength.

EDS results of fiber surface at the fracture surface of F2S8-3%

- ✓ Based on the Ca/Si and Al/Si ratios, the adhered product is C-(N)-A-S-H gel.
- \checkmark Strong adhesive ability of C-(N)-A-S-H gel enhances the bond of steel fibers in the UHPGC matrix.

Lao, Jian-Cong, et al. *RILEM Strain Hardening Cementitious Composites - SHCC5 (2022)*

UHPC with PE fibers

Precursor: Fly Ash, GGBS and Silica Fume **Activator:** Sodium metasilicate and waterglass

Mix Proportions

	Precursors			Activators				Patra	
Mix ID	FA	GGBS	SF	Fine Sand	Na₂SiO₃ – Waterglas Anhydrous		Borax Water	Fiber	
F8G2	847.2	211.8	55.7	334.4	105.8	157.6	31.7	196.4	2.0% (Vol) PE
F5G5	539.1	539.1	56.7	340.5	107.7	160.5	32.3	200	Fibers*
F2G8	219.6	878.6	57.8	346.8	109.7	163.5	32.9	203.7	_

*PE fibers have a length of 18mm and a diameter of 24 μm

Curing conditions:

Samples casted into specific molds covered with plastic sheet Demolding after 24hr sealed curing at ambient temperature Specimens sealed with plastic wraps subjected to 80°C for 72hrs After the heat curing, specimens taken out for mechanical testing

Lao, Jian-Cong, et al. RILEM Strain Hardening Cementitious Composites - SHCC5 (2022)

Compressive Strength Results

Experimental Procedure: 50x50x50 mm³ cubes subjected to a loading rate of 1.0MPa/s

Compressive strength increased with the decrease in FA/GGBS ratio due to the lower reactivity of FA compared to GGBS.

Lao, Jian-Cong, et al. *RILEM Strain Hardening Cementitious Composites - SHCC5 (2022)*

Tensile Performance

- \checkmark Ultra-high tensile ductility (over 9.0%) was achieved for all mixes.
- \checkmark FA/GGBS ratio had a marginal influence on the deformability.
- ✓ Larger stress drops were observed in mix F2S8 which indicates formation of cracks with larger widths. The mix F8S2 showed smaller stress drops.
- ✓ The use of higher FA/GGBS ratio resulted in more saturated cracks with narrowed widths.

Lao, Jian-Cong, et al. *RILEM Strain* Hardening Cementitious Composites -SHCC5 (2022)

BSE results of Matrix

- ✓ Mix F8S2 with higher FA/GGBS ratio showed a looser paste microstructure with more heterogenous flaws compared to mix with F2S8.
- ✓ In the mix F5G5, denser microstructure is observed in locations with more unreacted GGBS particles.

This can be attributed to the N-A-S-H gel formed by the FA-based system which is less space filling than the C-(A)-S-H products generated from the activation of GGBS.

Lao, Jian-Cong, et al. *RILEM Strain Hardening Cementitious Composites - SHCC5 (2022)*

PE fibers reinforced UHPC with varying water to precursor ratio (w/p)

Precursor: Fly Ash, GGBS and Silica Fume **Activator:** Sodium metasilicate and waterglass

Mix Proportions

Mix ID	Precursors			Fine Sand	Activators		ine Sand Activators		Borax	Extra Water	Total water	Fiber
	FA	GGBS	SF		Na₂SiO₃− Anhydrous	Waterglass						
F8S2-0.22	0.760	0.190	0.050 0.030	0.030	0.095	0.141	0.038	0.122	0.220	2.0% (Vol) PE		
F5S5-0.22	0.475	0.475								Fibers*		
F2S8-0.22	0.190	0.760										
F8S2-0.27	0.760	0.190						0.172	0.270			
F5S5-0.27	0.475	0.475										
F2S8-0.27	0.190	0.760										

*Ultra-high-molecular-weight (UHMW) polyethylene (PE) fibers (length: 18mm, diameter: 24µm)

Compressive Strength

Lao, Jian-Cong, et al. Cement and Concrete Research 165 (2023): 107075.

UNIVERSITY OF TEXAS 🛧 ARLINGTON

Bound water content

Capillary pore volumes

Relation between capillary porosity and compressive strength

Porosity strength relation:

$$f_c = f_0 e^{-kp}$$

Where,

- f_c : Material strength
- f_0 : Strength when porosity is zero
- k : constant
- p: porosity

w/p ratio leads to a denser microstructure

- F2S8-0.22 compressive strength close to theoretical strength when porosity is zero.
- ✓ Increasing slag content increases Ca/Si which leads to improved water binding ability resulting in fewer pores and higher compressive strength.

Nano-indentation sample preparation

- ✓ RMS Roughness value calculated over $40x40 \,\mu m^{2.}$
- ✓ Deconvolution of modulus distribution was performed to recognize the following phases:
 - 1. Low density (LD) C-S-H
 - 2. High density (HD) C-S-H
 - 3. Ultra high-density (UHD) C-S-H
 - 4. Unreacted FA and GGBS particles

Experimental Procedure:

- ✓ Grid indentation was performed over $100 \times 100 \,\mu\text{m}^2$ grid with $10 \mu\text{m}$ spacing.
- ✓ Load-indentation curves were generated by subjecting the sample to a linear load for 10 seconds, holding it at peak load (2000 μ N) for 5 seconds, and then unloading it for 10 seconds.

Probability density of elastic modulus for w/p 0.22

Elastic Modulus (GPa)

Average elastic modulus of single phase after deconvolution

			FA	GGBS
22.2±3.7	29.8±4	47±9.9	83.8±13.8	123.3±10.3
24.8±3.5	33.8±6	53.9±9	86.8±14.2	125.6±12.2
25.9±3.4	34.5±5.4	55.7±9.4	84.2±15.6	124.6±15.1
	22.2±3.7 24.8±3.5 25.9±3.4	22.2±3.7 29.8±4 24.8±3.5 33.8±6 25.9±3.4 34.5±5.4	22.2±3.7 29.8±4 47±9.9 24.8±3.5 33.8±6 53.9±9 25.9±3.4 34.5±5.4 55.7±9.4	22.2±3.729.8±447±9.983.8±13.824.8±3.533.8±653.9±986.8±14.225.9±3.434.5±5.455.7±9.484.2±15.6

LD: low density, HD: high density, UHD: ultra-high density

Lao, Jian-Cong, et al. Cement and Concrete Research 165 (2023): 107075.

UNIVERSITY OF TEXAS 🖈 ARLINGTON

Tensile strain (%)

- ✓ All mixes displayed pronounced strain hardening behavior with a tensile strain capacity of over 8%.
- ✓ F2S8 displayed highest compressive strength, tensile strength and tensile strain capacity

Summary of mechanical properties

Mechanical properties	F8S2-0.22	F5S5-0.22	F2S8-0.22
Ultimate tensile strength (MPa)	14.5 ± 0.2	14.4 ± 0.6	15.9 ± 1.0
Tensile strain capacity (%)	8.8 ± 0.7	8.1 ± 0.1	9.1 ± 0.3
Average crack width at the ultimate tensile strain (µm)	76.8 ± 7.5	125.3 ± 11.9	109.0 ± 11.3

DIC strain fields at different tensile strain levels (3.0%, 6.0% and ultimate strain)

- Cracking behavior visualized by strain field analyzed by DIC technique.
- ✓ Saturated multiple cracking observed.

<

Average crack width is between 110-130µm Maximum allowable crack width for concrete members subjected to extreme environments (0.33 mm – ACI 318)

Compressive strength vs tensile strain capacity relations

Comparison between existing literature and proposed mix in this study

- ✓ Simultaneously achieved ultra-high compressive strength and ultra-high tensile ductility.
- ✓ Mix developed in this study showed compressive strength between 94.4-180.7MPa and a tensile strain capacity of 8.1-9.9%.

Lao, Jian-Cong, et al. Cement and Concrete Research 165 (2023): 107075.

UNIVERSITY OF TEXAS 🛧 ARLINGTON

Center for Advanced Construction Materials

Thank you!

https://cacm.uta.edu/