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Introduction
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Introduction

Development of in-situ spatial dependent material characterization method
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Elastic wave propagation + Machine learning
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Direct correlation with material properties Success in many other fields
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Artificial neural networks

ANNs is one of the most popular machine learning techniques
 Convolutional neural network (CNN): image classification

* Recurrent neural network (RNN): natural language processing

Traditional artificial neural networks

Input layer Hidden layers Output layer
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Output: i = fo(p)
1 N
Cost function: J(0) = Nz[f(pi) — fo(p)]?
i=1

Parameters update: 0,.1 =0, —nVyeJ(0,)

No physics involved in ANNs
Requires a lot of training data to learn behavior
Limited performance in the regime where training data is scarce

$

Need for an alternative approach




Physics-informed neural networks

* Physics-informed neural network (PINN): Physics-based equation or governing equation is provided to ANNs as a prior knowledge*

* Governing equations are typically partial differential equations (PDEs)
* Heat equation, Diffusion equation, Wave equation, Etc.

* PINN can be used to solve for
* Forward problem: the process of determining the solution
* Inverse problem: the process of determining parameters or model

* How to implement physics-based equations?

N N
A A, . .
J(0) = ﬁz [F(p) — fo(p)]? Nz[gg(pi)]z E.g.: wave equation
= s ) 9%u d%u
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E I L LI N o I s *Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations." Journal of Computational physics 378 (2019): 686-707.



PINN architecture; 1D case

* Goal: solve inverse problems of the wave equation using ultrasonic wave data

Main network
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PINN architecture: 2D case

* Goal: solve inverse problems of the wave equation using ultrasonic wave data

Main network
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Experimental setup

Long rod-shaped samples

e Two materials: steel and mortar

Steel:
e D-10mm,L-1700 mm

!
Mortar: i
e D-25.4 mm, L-1470 mm % L
“strong”=w/c: 0.5, “weak”=w/c: 0.6 {
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Lead screw

e cs=1:3
motion stage t?

Excitation: PZT disc, 145 and 75 kHz
Receiver: broadband air-coupled transducer
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(b) Testing scheme () Detailed view of the measurement system

(a) Only a minor color difference between the two section is observed

Lee, Sangmin, and John Popovics. "Applications of physics-informed neural networks for property characterization of complex

E I L LI N o I s materials." RILEM Technical LettersT (2023): 178-188.



Numerical simulations

* Additional data sets were collected from numerical simulations

* Thesimulation considered a concrete slab or bridge deck.

Ultrasonic wave excitation source
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Numerical simulations

’ . . .
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PINN results for experimental data

Measurement data

PINN prediction results
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PINN results for experimental data

Steel Mortar
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PINN results for simulated data
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Conclusion

* Method for characterizing concrete mechanical properties using ultrasonic propagation data and physics-informed neural network

(PINN) was investigated.
* Material wave velocity profile as a function of space was predicted using experimental data from steel and mortar samples

» Simulated ultrasonic data in concrete slabs with defects were created through numerical simulations, and the damage zones were

detected by predicting spatial-dependent Young's modulus.

* PINN shows great potential for characterizing inhomogeneous material properties as a function of space, with potential applications

in /n situ assessment of concrete structures.
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Thank you

Sangmin Lee John S. Popovics
Graduate student Professor and Associate Head
University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign
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