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Introduction

• Easy to use

• Need calibration curve

• Relatively low repeatability

• Fast and good for automation

• Only for surface open crack

• Not direct correlation with 

material properties

• Characterize subsurface material property

• Affected by contact conditions

Rebound hammer Ultrasound pulse velocity Vision-based methods
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Introduction

Development of in-situ spatial dependent material characterization method

Direct correlation with material properties Success in many other fields

Elastic wave propagation Machine learning
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Artificial neural networks

Traditional artificial neural networks

• ANNs is one of the most popular machine learning techniques

• Convolutional neural network (CNN): image classification

• Recurrent neural network (RNN): natural language processing
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• No physics involved in ANNs
• Requires a lot of training data to learn behavior
• Limited performance in the regime where training data is scarce

Need for an alternative approach

Parameters update:

Output:
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Physics-informed neural networks
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• PINN can be used to solve for 
• Forward problem: the process of determining the solution 
• Inverse problem: the process of determining parameters or model

• Governing equations are typically partial differential equations (PDEs)
• Heat equation, Diffusion equation, Wave equation, Etc.
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*Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving 
forward and inverse problems involving nonlinear partial differential equations." Journal of Computational physics 378 (2019): 686-707.

• Physics-informed neural network (PINN): Physics-based equation or governing equation is provided to ANNs as a prior knowledge*

• How to implement physics-based equations?

E.g.: wave equation

Data fit Physics-based regularization
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PINN architecture: 1D case
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• Goal: solve inverse problems of the wave equation using ultrasonic wave data
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PINN architecture: 2D case
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• Goal: solve inverse problems of the wave equation using ultrasonic wave data
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Experimental setup
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(a) Only a minor color difference between the two section is observed

Long rod-shaped samples

• Two materials: steel and mortar
• Steel: 

• D-10 mm, L-1700 mm
• Mortar:

• D-25.4 mm, L-1470 mm
• “strong”=w/c: 0.5, “weak”=w/c: 0.6
• c:s = 1:3

• Excitation: PZT disc, 145 and 75 kHz
• Receiver: broadband air-coupled transducer

(b) Testing scheme (c) Detailed view of the measurement system

Lee, Sangmin, and John Popovics. "Applications of physics-informed neural networks for property characterization of complex 
materials." RILEM Technical Letters 7 (2023): 178-188.
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Numerical simulations

Ultrasonic wave excitation source

• Additional data sets were collected from numerical simulations

• The simulation considered a concrete slab or bridge deck.

Scanning points
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Numerical simulations

Case 1 Case 2

Case 3

Case 1 Case 2

Young’s modulus map Wave propagation simulation data

Case 3
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PINN results for experimental data
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PINN results for experimental data

Steel Mortar

Relative error: 0.15 % Relative error:  1 % (“strong”), 4 % (“weak”)
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PINN results for simulated data
Case 1 Case 2 Case 3

True map

PINN prediction

True map

PINN prediction

True map

PINN prediction

Relative L2 norm error: 0.64 % Relative L2 norm error: 0.45 % Relative L2 norm error: 0.56 %



14

Conclusion

• Method for characterizing concrete mechanical properties using ultrasonic propagation data and physics-informed neural network

(PINN) was investigated.

• Material wave velocity profile as a function of space was predicted using experimental data from steel and mortar samples

• Simulated ultrasonic data in concrete slabs with defects were created through numerical simulations, and the damage zones were

detected by predicting spatial-dependent Young's modulus.

• PINN shows great potential for characterizing inhomogeneous material properties as a function of space, with potential applications

in in situ assessment of concrete structures.
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