Architectural Forms and Structural Design

Sean Sadler

Carbon Emissions

- Cement production makes up nearly 9% of global carbon emission
- Ways to reduce emissions
 - Use material efficient
 - The use of OPC clinker
 - Improve kiln efficiency
 - Improve fuel mixtures
 - Improve energy use
 - Carbon Capture and Storage

02. Construction techniques

Research Goals

- Define a new architectural language for concrete structures that will introduce the use of a coefficient of stiffness for concrete formwork. This will include the design and development of the new formwork system
- Explore the use of advanced cementitious materials that will minimize the use of reinforcement without sacrificing structural integrity; and
- Evaluate new design strategies and computational tools that seamlessly integrate architectural forms with structural needs.

Cross Section

Where xs, ys are coordinates along the curve, I is the fabric perimeter length.

 $F(\theta,k)$ is the incomplete elliptical of the first kind, K(k) is the corresponding complete elliptic integral of the first kind

((k) = F($\pi/2$,k)). E(θ ,k) is the incomplete elliptic integral of the second kind.

Equilibrium considerations (I); and cross section predictions (r) (after losilevski, 2010).

Formwork Design

Casting

Concrete

Cylinder Diameter = 3"

<u>Control</u>

P = 61140 lbs | Peak Stress = 8649.64 psi

Cylinder 1

P = 60120 lbs | Peak Stress = 8505.24 psi

Cylinder 2

P = 57150 lbs | Peak Stress = 8085.07 psi

Testing

Steel Type 1

- Welded Wire Mesh Sections
- Pros
 - High maximum strength
 - Easy to bend
 - Easy to acquire in bulk
- Cons
 - High brittleness
 - Weak points at the welds
 - Small cross section

Steel Type 2

- #2 smooth bar (Pencil rod)
- Pros
 - Far less brittle
 - Consistent material
 - No weld points
 - Larger cross section
- Cons
 - Lower maximum strength
 - Difficult to bend
 - Lacks lugs and deformations

Beam Performance

- Fabric beam does not reach same maximum strength as prismatic
- Conclusions
 - Improper reinforcement is causing failure in the reinforcement before the concrete
 - While not being as strong it uses 40% less concrete by volume
 - Adjustment to the beam form to reduce stress concentration points

How to Reach Same Performance?

Next Steps

- Develop and fabricate a new formwork that will allow for better control of the tension on the fabric.
 - More control over the cross-section
 - Control over the depth
 - Consistent bearing surfaces
 - Beam symmetry
 - Fabric re-use

Investigate the use of post-tension reinforcement within the beam

Questions?