

Effects of Fly Ash on the Properties of Calcium Aluminate Binders

Authors: Sai Akshay Ponduru, Taihao Han, Jie Huang, Narayanan Neithalath and Aditya Kumar

Presented by: **Sai Akshay Ponduru**, PhD Candidate Graduate Research Assistant, Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO 65409

SA. Ponduru

ACI 2023, San Francisco, CA, April 03rd, 2023

Calcium Aluminate Cement

- Ordinary portland cement production accounts for CO₂ emissions ~8% globally
- Urgent need for alternative binders is required
- Calcium Aluminate Cement (CAC) also known as high alumina cement (HAC)–originally developed by LaFarge in 1909
- Raw materials necessary for the manufacture of CACs are limestone and bauxite
- Calcination temperature is 1200 °C
- Major Phases Monocalcium aluminate (CA), Dicalcium aluminate (CA₂)
- Minor Phases Mayenite (C₁₂A₇), and Ferrite (C₄AF)

Relative CO_2 emissions for alternative cements on a gramper-gram of material basis compared to ordinary portland cement

K.E. Kurtis et al, MRS Bulletin. 40 (2015)

 $CaO - C; SiO_2 - S; AI_2O_3 - A; Fe_2O_3 - F; SO_3 - $; H_2O - H$

Research Significance : Fly Ash

- Fly ash (FA) is a -
 - Coal combustion byproduct
 - Widely used as a supplementary cementitious material (SCM)
 - Classified as
 - Class C and Class F
- The chemistry of FAs significantly impacts the hydration kinetics and compressive strength of the binders
 - Pozzolanic Reaction
 - The Filler Effect
 - Effect of Sulfur Content
- Batch-to-batch variation in chemical compositions
- No standardized method to estimate the reactivity of FA

M. Amran et al, Materials 2021, 14, 4264.

SA. Ponduru

Topological Constraint Theory (TCT)

- Popular tool to help
 - Better understand the link between the structure and properties of disordered materials
 - Simplify a complex material into a simple number
 - Based on the chemical bonds between atoms
- TCT consists of
 - Network formers and network modifiers
- Can be applicable to calcium aluminosilicates
 - Especially fly ashes
- Reduces the complexity of fly ashes to a single number called "*number of constraints* (*n_c*)"
- Proxy for reactivity of fly ashes
 - Higher n_c , higher rigidity, lower reactivity
 - Lower n_c , lower rigidity, higher reactivity

SA. Ponduru

Materials and Methods

- 13 unique FAs with–
 - varying chemical compositions
 - Replace CAC at 10-50%_{mass}
 - Constant I/s ratio of 0.5
- Isothermal microcalorimeter was used to measure the heat release of [CAC+FA] binders
- Compressive strength of [CAC+FA] binders was tested based on ASTM C109
- X-ray diffraction and thermodynamic modelling were used to investigate phase assemblage in [CAC+FA] binders
- Thermodynamic Phase Assemblage Gibbs Energy Minimization Software (GEMS)

CAC Hydration

- Calcium aluminate hydrates (CAHs) and calcium aluminate silicates (CAS)
- CACs hydration
 - Composition
 - Anhydrous phases presence affects the hydrated phases
 - Water-to-cement ratio (w/c)
 - Formation of meta stable and stable phases
 - Additives
 - Formation of different hydrates affects the strength
 - Temperature dependent
 - Higher temperatures, T > 40 °C, Hydrogarnet formation
 - Moderate temperatures, 20 °C < T < 35 °C, C_2AH_8 formation
 - Lower temperatures, T < 20 $^{\circ}$ C, CAH₁₀ formation

SA. Ponduru

Results : Hydration Kinetics

- High Reactivity FAs
 - Decelerate early-age hydration of CAC
 - High reactivity causes greater cumulative heat release
 - The magnitude of filler effect is less influential than higher reactivity of FAs
- Low Reactivity FAs
 - Shorten induction period of CAC
 - High volume of crystalline content
 - FAs act as fillers
 - FA-8 and FA-11 filler effect
 - FA-7 has low cumulative heat

SA. Ponduru

ACI 2023, San Francisco, CA, April 03rd, 2023

X-Ray Diffraction Analysis

and [CAC + low reactivity FA]

Thermodynamic Phase Assemblage

Phase assemblage at 3 days

- Degree of hydration of CAC at 3 days was 79.0%
- The hydration is arrested in plain CAC at 87% reaction of CAC
- C₂AH₈ instead of CAH₁₀
- [CAC + 50% FA-3] contains more amount of straetlingite
- [CAC + 50% FA-7] contains less amount of Straetlingite

Reactivity of FAs

- Correlation between
 - Volume fraction of hydrates vs compressive strength
 - Selected hydrates are: CAH_{10} , C_2AH_8 , and Sträetlingite
- Degree of reaction of FA was determined
 - Independent of the replacement level
 - Monotonically decreases with an increase in n_c
 - Reactivities of FAs are between 4-to-26%

Conclusions

- High *n_c* exhibit
 - low intrinsic dissolution rate
 - lower potential to react with CAC phases
 - lower cumulative heat and compressive strength
- Low *n_c* exhibit
 - higher intrinsic dissolution rate
 - higher potential to react with CAC phases
 - higher cumulative heat and compressive strength
- XRD and thermodynamic simulations show
 - Good correlation with the TCT
- Degree of reaction of a given FA—is independent of its content (%_{mass}) in the binder — decreases with an increase in *number of constraints*

Thank You!

 The authors would like to thank the Missouri University of Science and Technology, the Materials Research Center at Missouri S&T, and NSF for their financial support

ACI 2023, San Francisco, CA, April 03rd, 2023

Questions ?

SA. Ponduru

ACI 2023, San Francisco, CA, April 03rd, 2023

Slide 13