ceEntek

Innovative use of Nanotechnology for Sustainable Ultra-High Performance Concrete by Vic Perry

....with Next Generation Nano-engineered UHPC 2.0TM

ceEntek Confidential

Our Mission:

To improve society's quality of life by building more durable and resilient infrastructure with $UHPC 2.0^{TM}$ – the infrastructure that provides clean water, food, sanitation, the movement of goods and the accommodation of people.

"We make a living by what we get, but we make a life by what we give." Winston Churchill

Claiborne Pell Newport Suspension Bridge, RI

- UHPC definition
- The nano-physics and chemistry of UHPC 2.0[™]
- What is Carbon Nano-Fiber & How is it made?
- A project comparison of Embodied CO₂ in a UHPC Bridge
- Q&A

What is UHPC?

Ultra-high performance concrete (UHPC) — a cementitious composite material with enhanced strength, durability, and ductility compared to high performance concretes.

Note: UHPC may contain fibers for post-cracking ductility, have a specified compressive strength of at least 120 MPa at 28 days, and are formulated with a modified multi-scale particle packing of inorganic materials of less than 0.6 mm diameter (larger sizes may be used).

Reference: CSA A23.1 Annex U- UHPC

ceEntek Confidential

ceEntek

ceEntek's Nano-engineered Next Generation UHPC 2.0[™]

What is CNF?

Same chemistry – carbon but different crystal structure. -A good source of carbon are Graphite and hydrocarbons like, Natural Gas

Structural Difference between Carbon Nanotubes and Carbon Nanofibers (Carbon atoms in a 2D honeycomb)

Carbon Nanofibers (using Transmission Electron Microscopy)

How is it Made?

Next Generation Nano-engineered UHPC 2.0[™]

SEM Image of CNF

ceEntek

WHAT DOES CNF DO FOR UHPC – ENHANCES LINKAGE OF THE MATRIX

Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes

Geng Ying Li ^{a,b,*}, Pei Ming Wang ^b, Xiaohua Zhao ^a

Chemical Bond is a Must!

How does CNF Influence on Microstructure

WHAT DOES CNF DO FOR UHPC - FORCE-LOCKING CONNECTION

High-Angle Annular Dark-field ScanningTransition Electron Microscopy (HAADF-STEM*) image of a CNF spanning a pore.Both ends are chemically connected to the matrix.

The smaller diameter of the CNF in the center of the pore shows that it is under tensile stress.

* highly sensitive to variations in the atomic number (Z-contrast images)

What does CNF do for UHPC?

(Fresh Properties & Early Hydration Phases)

- During the early hydration process, the carbon nano-fibers cross-link with the calcium ions to have a higher water retention capacity, thereby extending the fluid working time;
- The CNF regulates the cement hydration products into regular shaped hydration products creating a final nano-engineered dense (ITZ) compact micro-structure;
- The more uniform hydration reduces differential internal stresses and improves cross linking of the CNF & hydration products thereby providing an increase in early compressive strengths.

ceEntek

A mixture of diluted enhanced CNF paste

Slump flow of a Thixotropic mix with CNF $10 \,$

What does CNF do for UHPC?

(Hardened Properties)

 It densifies the Interfacial Transition Zone (ITZ) and improves the bond by effectively controlling the early response to cracking - the CNF delays the development of nano-scale cracks that grow into micro-cracks;

• The CNF densify the ITZ and reduce the wall effect, thus leading to an increases pull-out strength of the steel fibers.

Cement-based matrix

Radial micro-cracks observed at fiber tunnel

Nanofiber-bridging microcracks

* From Research at NTU by He et al.

What does CNF do for UHPC?

(Reduces Shrinkage)

AASHTO T 160 / ASTM C157/C157M Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

> CTLGroup ID: FT-157 Client ID: ce200SF-t™

Example of CO₂ Emissions for a Bridge

Claiborne Pell Newport Suspension Bridge, RI

The Concrete Solution

The Concrete Solution:

Steel

The

Steel Girder

The UHPC 2.0[™] Solution*

* Based on MIT optimization Study.

ceEntek Confidential

Super- Structure - Quantities of Materials

1) Initial Construction ONLY(NIC: Speed of construction or Life Cycles)

	Steel			Pre-Cast Concrete			UHPC 2.0 [™]					
	Concrete (m ³)	Steel (tonnes)	UHPC (m ³)	Membrane (m²)	Concrete (m ³)	Steel (tonnes)	UHPC (m³)	Membrane (m ²)	Concrete (m ³)	Steel (tonnes)	UHPC (m³)	Membrane (m²)
Deck	44	4.0	0	219	46	4.1	0	219	0	0	0	0
Beams	0	45	0	0	71	12	0	0	0	9.0*	35	0
Totals	44	49	0	219	117	16.1	0	219	0	9.0	35	0

Legend:

Steel includes WWF, X-Bracing, Gussets, Stiffeners, Re-bar and Strands & fibers

Concrete includes beams, deck and diaphragms

* Includes steel fibers

Super- Structure - CO₂ Emissions per unit of Materials

Material	Density (kg/m³)	CO ₂ * (kg /t)	CO_2^* (kg /m ³)	
Concrete	2300	140	324	
UHPC 2.0 [™]	2500	250	625	
Steel	7800	2200	17160	
Asphalt	2400	77	184	

*Source - Report to CAC

Prepared by the Athena Sustainable Materials Institute "Life Cycle Embodied Energy & Global Emissions for Concrete & Asphalt Roadways"

Super- Structure - - Quantities of CO₂ Emissions

1) Initial Construction ONLY(NIC: Speed of construction or Life Cycles)

	Steel			Pre-Cast Concrete				UHPC 2.0 [™]				
	Concrete (m ³)	Steel (tonnes)	UHPC (m ³)	Membrane (m ³)	Concrete (m ³)	Steel (tonnes)	UHPC (m³)	Membrane (m^3)	Concrete (m ³)	Steel (tonnes)	UHPC (m³)	Membrane (m ³)
Volume of Materials	44	49	0	11	117	16.1	0	11	0	9.0	35	0
CO ₂ /volume	324	2200	575	184	324	2200	575	184	324	2200	625	184
CO ₂ Sub-Total	14256	107800	0	2024	37908	35420	0	2024	0	19,800	21875	0
Total(kg) =	312	24,080				275,35	<u>2</u>			- <u>-</u> 241	,675 <	-

ceEntek

Super- Structure - -Quantities of CO₂ Emissions (Con't)

2) Impact of speed of Construction :

Assumptions:

i) Five days are saved on construction schedule, therefore new alignment in service one week sooner.

ii) Now 10,000 vehicles per day save 2 km of travel for one week.

iii) CO₂ per vehicle kilometer = 0.25kg*

Savings = 35000 kg of CO₂

	Steel	Pre-Cast Concrete	UHPC 2.0 ™		
CO ₂ Sub-Total	124,080	75,352	41,675		
CO ₂ Savings for Schedule	0	0	(35000)		
CO ₂ Sub-Total	124,080	75,352	6675		

UHPC 2.0TM reduces CO₂ to < 10% of Conventional!

* Source - Environment Canada

Super- Structure - Quantities of CO₂ Emissions (Con't)

3) Impact of Maintenance & Operations :

Assumptions:

i) 50 year life.

ii) Replace asphalt membrane 1 time.

iii) Replace entire Concrete deck once in 50 year life.

iv) Extra 2 km of detour travel for one week during 50 year life

Additional = $60,080 \text{ kg of } CO_2$

	Steel	Pre-Cast Concrete	UHPC 2.0 ™		
CO ₂ Sub-Total	124,080	75,352	6675		
Extra CO ₂ for O & M	60,080	60,080	(0)		
CO ₂ Sub-Total	184,160	135,432	6675		

UHPC 2.0TM reduces CO_2 to < 5% of Conventional!

ADVANTAGES OF CONSTRUCTING A BRIDGE IN UHPC 2.0[™]

X-SECTIONAL AREA OF MATERIALS	REDUCED
PASSIVE REINFORCING STEEL	ELIMINATED
FORMWORK	REDUCED
CRANE TIME	REDUCED
CONSTRUCTION TIME	REDUCED
WATERPROOFING FOR PROTECTING R/F	ELIMINATED
CORROSION INHIBITORS / EPOXY RE-BAR	ELIMINATED
FOUNDATIONS	REDUCED
ENVIRONMENTAL IMPACT	REDUCED
OPERATIONAL MAINTENANCE	REDUCED
SEISMIC PERFORMANCE	IMPROVED

UHPC 2.0TM

THANK YOU!

Vic Perry, FCSCE, MASc., P.Eng President / COO ceEntek North America Ph: 1-403-669-8632 Email: vhperry@ceEntek.com