

A PRESENTATION

ON

Multi-Level Assessment of the Influence of Moisture and Temperature in ASR-Induced Expansion and Deterioration

BY:

Olusola David Olajide Ph.D. Candidate, Concordia University, Canada

> SUPERVISORS: Dr. Michelle Nokken Dr. Leandro Sanchez

Introduction Objectives Materials and methods Results and discussion Conclusions

INTRODUCTION – Alkali Aggregate Reactions

Alkali Aggregate Reactions (AAR)

Alkali Silica Reaction (ASR)

□ Alkali Carbonate Reaction (ACR)

Conclusions

INTRODUCTION – Role of Moisture and Temperature

- Moisture and temperature improves the development of ASR; Moisture threshold of 80% critical
- Studies has been limited to the use of external moisture

Introduction

Objectives

> Conclusions

Results and

discussion

CONCRETE

CONVENTION

Multi-level Assessment Of ASR Induced Deterioration

- Damage Rating Index (DRI)
- Direct Shear Test
- Stiffness Damage Test (SDT) Σ

MLA

Objectives

Introduction

Objectives

CONVENT

Damage Rating Index (DRI)

- Semi-quantitative microscopic tool on polished concrete sections
- Performed with a stereomicroscope (15-16x)

Features	Weighting factors
CCA: Closed Cracks in aggregates	0.25
OCA: Open cracks in aggregates	2
OCAG: Cracks with reaction products in aggregates	2
CAD: Debonded aggregates	3
DAP: Disaggregated/corroded aggregate particle	2
CCP: Cracks in cement paste	3
CCPG: Cracks with reaction products in cement paste	3

Introduction

Objectives Mat

Materials and methods

Results and discussion

• Conclusions

Damage Rating Index (DRI)

Introduction

7/18

Direct Shear Test

- Aggregate interlock improves shear resistance
- ASR affects aggregate interlock

Cylinder size: 100 x 200mm

Notch Width: 5mm, Loading rate: 100 N/s (Ziapour et al., 2022)

Notch depth: $22 \pm 1mm$ (*Barr and Hanso, 1986*)

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Introduction

Objectives

Materials and methods

Results and discussion

Conclusions

OBJECTIVES

Internal versus external moisture and ASR development

Influence of moisture and temperature on the kinetics of ASR

Microscopic damage features at numerous exposure conditions

Mechanical properties loss

Materials and Results and discussion

methods

Conclusions

MATERIALS AND METHODS – Framework for moisture measurement

Introduction > Objectives

Materials and methods

Results and discussion

Conclusions

RESULTS AND DISCUSSION - Internal versus External RH

11/18

Introduction

Objectives

Materials and

methods

Results and

discussion

CONVENTION

Conclusions

SP: Spratt

Objectives

Introduction

Materials and

methods

Results and

discussion

CONVENTION

Conclusions

Kinetics of ASR at numerous moisture and temperature

Introduction

Conclusions

Kinetics of ASR at numerous moisture and temperature

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Damage Rating Index Results (Spratt Reactive aggregates; SP)

13/18

Materials and methods

Objectives

Introduction

Results and discussion

Conclusions

Objectives Introduction

Materials and methods

Results and discussion

Conclusions

Damage Rating Index Results (Spratt Reactive aggregates; SP)

Materials and methods

ls and ods Results and discussion

• Conclusions

Direct Shear Test Results (Spratt Reactive aggregates; SP)

16/18

Introduction > Objectives

Materials and methods Results and discussion

> Conclusions

Direct Shear reduction versus DRI features (Spratt Reactive aggregates; SP)

Introduction > Objectives

Materials and methods

Results and discussion

Conclusions

Internal RH is higher than the external RH at low moisture levels for most part of the experiment

The moisture threshold is dependent on temperature of aggregates ASR expansion is coupled with drying shrinkage at low moisture levels

> Correlation exists between **petrographic features and shear loss** at numerous exposure conditions using Spratt reactive aggregates

> > CONCRETE CONVENTION

MERCI !!!

QUESTIONS?

MATERIALS AND METHODS – Control of Relative Humidity (RH)

Introduction

Temp/RH	21°C	38°C	60°C
100%	distilled water	distilled water	distilled water
90%	barium chloride	potassium nitrate	potassium sulfate
82%	ammonium sulfate	potassium chloride	potassium nitrate
75%	sodium chloride	sodium chloride	sodium chloride
62%	sodium bromide	sodium nitrite	sodium nitrite

Materials and

methods

Objectives

Results and

discussion

CONVENTION

ASTM E104

Conclusions