CHLORIDE INGRESS AND CHLORIDE-INDUCED CORROSION IN CONCRETE PRODUCED WITH CALCIUM SULFOALUMINATE CEMENT

Presented by:

Tijani Mohammed (Ph.D. Candidate)

Contributors:

Ikechukwu K. Okechi (Ph.D. Candidate) Texas State University

Dr. Anthony Torres, Texas State University

Dr. Federico Aguayo, University of Washington

Outline

- Background
- Research Problem
- Research Objectives/ Significance
- Research Methodology
 - Materials
 - Sample preparation
 - Testing
- Results and Discussion
- Conclusion
- Future work

Background

CSA Benefits

- Rapid setting and hardening (33 MPa in 1st 3 hours of hydration)
- Lower CO₂ emissions during production
- Self-stressing and shrinkage compensation
- High resistance to sulfates

Carbonation in CSA concrete

- Lower initial alkali content (lower buffer capacity)
- Potentially more rapid rate of carbonation
- Potential breakdown of ettringite due to carbonation
- Alteration in hydrates may potentially lead to increased porosity and reduced strength

Chloride-ion ingress in CSA concrete

- Potentially lower chloride binding capacity
- Lower Friedel's salt formation
- High penetrability of chlorides worsened by carbonation and increased porosity
- Can be exacerbated by the presence of cracks

Research Objective/Significance

Objective

 To assess the corrosion rate due to chloride-ion ingress on cracked, pre-carbonated, and normal (control) reinforced concrete produced with CSA cements using Type I/II as control.

Significance

- Gain understating of chloride-ion corrosion resistance of reinforced concrete produced with CSA cements.
- Generate data that will provide guidance for safe and effective use of CSA cement in reinforced concrete

Methodology

Materials

- 4 CSA cements and Type I/II cement (OPC2)
- A liquid polycarboxylate-ether-based superplasticizer
- Set retarders (Citric acid)
- Well-graded coarse aggregate and river sand

Cement mix proportion and compressive strength

Cement	W/CM	Total Binder	Str	ength (MPa)	
Туре		Kg/m³(lb/yd³)	3 (lb/yd 3) 1-Day	7-Day	28-Day	
OPC2	0.35	446 (752)	41.4	60.3	69.0	
CSA1	0.35	446 (752)	51.1	59.9	65.2	
CSA2	0.38	390 (658)	36.5	41.6	43.9	
CSA3	0.38	390 (658)	55.7	58.7	57.9	
CSA4	0.38	390 (658)	35.6	39.7	45.2	

aci

CONCRETE

Sample preparation

- Samples prepared per ASTM G109 with three series of beam preconditioning:
- Series 1 Control: Standard G109 reinforced beams (no carbonation or crack)
- Series 2 Cracked: Reinforced beams cast with thin 1.0 mm plastic shim at a depth of 10mm at the center of the sample (removed prior to final set)
- Series 3 Carbonated: Reinforced beams placed into accelerated carbonation chamber @ 4%CO₂ and 57% RH for 28 days

Series 3: Carbonation depth

Cement	Depth	Deviation
Туре	(mm)	(mm)
OPC2	0	± 0
CSA1	6.9	± 0.86
CSA2	8.8	± 1.30
CSA3	9.2	± 1.04
CSA4	10.3	± 1.50

Schematic representation of ASTM G109 samples

Series 2: Crack introduction

Series 3: Carbonation chamber

ac

Testing

- Samples were ponded with 3% NaCl for 2 weeks and left dry for another 2 weeks repeatedly
- Microcell corrosion measurement with Gamry equipment (LPR technique)
 ✓Half-cell potential (Vs Ag/AgCl)
 ✓Current density

Microcell corrosion measurement

(aci) CONCRETE

Control (half-cell)

- OPC2, CSA3, and CSA4 indicate a low risk of corrosion due to high binding
- CSA1 (high ye'elmite) intermediate risk throughout due to lower binding. CSA2 (high belite) low risk of corrosion until 14 months where it showed intermediate corrosion rate

Equivalent Aq/AqCI potentials for classifying corrosion activity based on ASTM C876

to lower binding. CSA2	Corrosion potential (mV vs	Condition
h belite) low risk of	Ag/AgCl)	
osion until 14 months	> -106	Low (< 10% risk of corrosion)
re it showed intermediate	-106 to -256	Intermediate (50% risk of corrosion)
osion rate	-256 to -406	High (> 90% risk of corrosion)
	< -406	Severe corrosion
THE WORLD'S GATHERING PLA	ACE FOR ADVANCING CONCRETE	

Carbonated (half-cell)

- OPC2, CSA3, and CSA4 indicate a low risk of corrosion due to high binding.
- CSA1 (high ye'elmite) high risk of corrosion from AFt phases breakdown due to carbonation. CSA2 (high belite) showed low risk of corrosion not affected much by carbonation

Equivalent Ag/AgCI potentials for classifying corrosion activity based on ASTM C876

akdown due to carbonation.	Corrosion potential (mV vs	Condition
2 (high belite) showed low	Ag/AgCl)	
of corrosion not affected	> -106	Low (< 10% risk of corrosion)
in by carbonation	-106 to -256	Intermediate (50% risk of corrosion)
	-256 to -406	High (> 90% risk of corrosion)
	< -406	Severe corrosion
THE WORLD'S GATHERING PLA	ACE FOR ADVANCING CONCRETE	

Cracked (half-cell)

• OPC2, CSA2, and CSA3 indicate a low risk of corrosion due to high chloride binding due to the presence of Friedel's salt (OPC2) and permeability-reducing admixtures (CSA3 & CSA4)

· CSA1 (high ye'elmite) and CSA2 (high belite) intermediate risk of corrosion due to low binding and no Friedel's salt and perhaps cracks

Equivalent Ag/AgCI potentials for classifying corrosion activity based on ASTM C876

ixtures (CSA3 & CSA4)	Corrosion potential (mV vs	Condition
1 (high ve'elmite) and	Ag/AgCl)	
2 (high belite) intermediate	> -106	Low (< 10% risk of corrosion)
of corrosion due to low	-106 to -256	Intermediate (50% risk of corrosion)
ing and no Friedel's salt	-256 to -406	High (> 90% risk of corrosion)
	< -406	Severe corrosion
THE WORLD'S GATHERING PLA	ACE FOR ADVANCING CONCRETE	

Current density Normal

 Samples exhibiting passive to moderate corrosion rate

Classifying risk of corrosion using corrosion current density

	Corrosion current density (µA/cm ²)	Corrosion classification
	Up to 0.1	Passive condition
	0.1 – 0.5	Low to moderate corrosion
	0.5 – 1	Moderate to high corrosion
	More than 1	High corrosion rate
RING P	LACE FOR ADVANCING CONCRETE	

THE WORLD'S GATHERIN

Current density Carbonated

 Samples exhibiting passive to moderate corrosion rate

Classifying risk of corrosion using corrosion current density

Corrosion current density (µA/cm ²)	Corrosion classification
Up to 0.1	Passive condition
0.1 – 0.5	Low to moderate corrosion
0.5 – 1	Moderate to high corrosion
More than 1	High corrosion rate
G PLACE FOR ADVANCING CONCRETE	

THE WORLD'S GATHERING PLACE

Current density Cracked

• Samples are considered as exhibiting passive to moderate corrosion rate

Classifying risk of corrosion using corrosion current density

Corrosion current density (µA/cm ²)	Corrosion classification
Up to 0.1	Passive condition
0.1 – 0.5	Low to moderate corrosion
0.5 – 1	Moderate to high corrosion
More than 1	High corrosion rate
ACE FOR ADVANCING CONCRETE	

THE WORLD'S GATHERING PL

Conclusion

- Based on half-cell potential:
 - Carbonated CSA1(high ye'elmite) showed a high corrosion rate and could be associated with the breakdown AFt phases and their low binding capacity.
 - > CSA1 and CSA2 had a higher rate of corrosion among the cracked samples
 - > OPC2 demonstrated a low corrosion rate due to a high binding capacity and the presence of Friedel's salt.
 - CSA3 and CSA4 (Both Belite cements) showed low corrosion rate due to addition of permeability reducing admixtures.

• Based current density:

> Cracked, Carbonated, and Normal samples demonstrated a passive and a low to moderate corrosion rate.

Acknowledgment

> Texas Department of Transportation for the support of project 0-7017, "The Use of Rapid Setting and Hardening

Cements for Structural Applications

Cement Providers and manufactures

Contact

Name	Institution	Email
Tijani Mohammed	Texas State University	t_m382@txstate.edu
Okechi Kingsley	Texas State University	iko4@txstate.edu
Dr. Anthony Torres	Texas State University	anthony.torres@txstate.edu
Dr. Fred Aguayo	University of Washington	aguayo12@uw.edu

References

- [1] E. T. G. Moffatt and M. D. Thomas, "Effect of Carbonation on the Durability and Mechanical Performance of Ettringite-Based Binders," ACI Materials Journal, vol. 116, no. 1, 2019
- [2] M. Dornak, J. Zuniga, A. Garcia, T. Drimalas, and K. J. Folliard, "Development of Rapid, Cement-Based Repair Materials for Transportation Structures," 2015.
- [3] J. H. Ideker, C. Gosselin, and R. Barborak, "An Alternative Repair Material," Concrete International, Article vol. 35, no. 4, pp. 33-37, 04// 2013. [Online]. Available: <u>http://libproxy.txstate.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=aps&AN=86652443&login.asp&site=eds-live&scope=site</u>.
- [4] M. P. E. Moses and B. Perumal, "Latest Advances in Alternative Cementations Binders than Portland cement," *IOSR Journal of Mechanical and Civil Engineering*, vol. 13, no. 5, pp. 45-53, 2016. [6]
- [5] E. G. Moffatt and M. D. Thomas, "Durability of Rapid-Strength Concrete Produced with Ettringite-Based Binders," *ACI Materials Journal,* vol. 115, no. 1, pp. 105-115, 2018.
- [6] S. Lamberet, "Durability of ternary binders based on Portland cement, calcium aluminate cement and calcium sulfate," EPFL, 2004.

Diffusion coefficient and surface concentration

	Cement	Surface concentration,	Diffusion coefficient,		
)	Туре	C _s (%)	D _c (m²/s)		
	OPC2	0.89	6.25E-12		
	CSA1	0.57	1.04E-11		
	CSA2	0.35	6.75E-10		
	CSA3	0.40	6.41E-11		
	CSA4	0.72	2.94E-11		
17	ANCING CON	CRETE			

Chemical composition

Cement ID	SiO ₂	Al_2O_3	Fe_2O_3	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	Na ₂ O _e	LOI
OPC2	21.06	4.02	3.19	63.91	1.08	2.89	0.14	0.61	0.53	2.29
CSA1	9.07	21.61	2.26	45.26	0.94	20.26	0.07	0.30	0.27	1.05
CSA2	20.56	16.14	1.35	45.31	1.23	14.73	0.77	0.72	1.24	4.74
CSA3	13.63	15.82	0.75	51.28	1.14	16.62	0.29	0.62	0.69	3.06
CSA4	14.72	14.37	1.22	53.85	1.23	14.40	0.10	0.59	0.49	3.39

Cement Type	Description
OPC2	OPC Type I/II
CSA1	High Ye'elmite CSA (40% Ye'elmite)
CSA2	High belite CSA (58% belite)
CSA3	Belite cement (39% belite) + permeability reducing admixtures
CSA4	CSA belite cement (42% belite) + permeability reducing admixtures

Phases	CSA1	CSA2	CSA3	CSA4	PCSA1	PCSA2
C ₄ A ₃ S (Ye'elmite)	40.2	30.5	30.6	27.1	18.3	26.9
C ₂ S (Belite)	26.0	58.9	39.1	42.2	49.8	57.7
ĊŚ	25.5	18.2	21.4	18.4	14.1	15.9
C₄AF	6.9	4.1	2.3	3.7	9.1	10.7

