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The Problem
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▪ Closely spaced transverse cracks on 

numerous bridges in western 

Montana

▪ In some cases, through deck 

penetrations developed

▪ Young bridge decks< 8 years

▪ Mostly in the alpine regions
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The Investigation

▪ Construction Document and Literature Review

▪ Field Inspections

▪ Instrumentation

▪ Laboratory Testing

▪ Finite Element Modeling (FEM)
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Field Inspections

▪ 14 bridge decks inspected

▪ Crack mapping – density/severity

▪ Delamination survey

▪ Ground penetrating radar

▪ Infrared thermography

▪ Drone survey

▪ Concrete core extraction

▪ Bridge deck documentation



Field Inspections
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▪ Overall Visual Rating = 3

▪ Transverse cracks at 3 to 4 feet

▪ Crack width 20 to 30 mils
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Field Inspections – IR/Drones
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▪ Drone survey with infrared 

thermography (IR)

▪ IR could pick up cracks as 

tight as 5 mils

▪ Cracking density but not 

cracking severity



Field Inspections - Summary
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▪ No delamination found

▪ Transverse cracks align with reinforcing steel

▪ Most transverse cracks are full thickness

▪ The following factors did not yield any consistent trends in the 

development of transverse cracking severity: bridge bearing 

type, span length, span bearing type, placement location, and 

placement length.

▪ Very early age and late age development of transverse cracks



Instrumentation
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▪ Assess the impact of environmental changes on the 

internal deck temperatures, relative humidity (RH), and 

strains.

▪ Instrumentation:

▪ Strain (vibrating wire SG’s)

▪ Temperature

▪ Relative Humidity (resistive)

▪ Ambient conditions 

– temperature, relative humidity, wind speed, and solar radiation



Instrumentation
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Instrumentation
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Instrumentation
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Instrumentation
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Vibrating 

wire strain 

gages

RH 

Sensors

Thermocouples



Instrumentation
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Instrumentation - Strain
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▪ Compressive strain developed in deck after removal of 
insulation and heating

Removal of insulation 

blankets and heating



Solutions for the Built World 18



Instrumentation - Temperature
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▪ Large daily temperature changes observed (ΔT=55 to 60˚F)
▪ Temperature gradient within the deck, 20F
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Instrumentation - Relative Humidity
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▪ Large daily RH changes observed, increase from 20 to 100 % within 
24 hours - RH gradient within the deck up to 30% RH
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Laboratory Testing
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▪ Mix designs were tested in the laboratory for the following:

▪ Compressive, splitting, MoE, and flexural strength versus maturity

▪ Drying shrinkage (varying moist cure durations)

▪ Creep (various loading ages)

▪ Coefficient of thermal expansion

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

0 50 100 150 200 250 300

Av
er

ag
e 

Ne
t S

pe
cif

ic 
Cr

ee
p 

(m
icr

o 
st

ra
in

/p
si)

Time (days)

Concrete Creep

5-day

28-day

90-day

14 day - interpolated



Finite Element Modeling (FEM)
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▪ Full scale, 3D Model of bridge deck created in 

Abaqus/CAE 2020

▪ Same bridge as instrumentation

▪ 4-span bridge, 5 steel plate girders with 7.75” composite 

deck

▪ FE model included full-length deck geometry, girders, and 

lateral braces



Finite Element Modeling (FEM)
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Girders and stiffeners 

modeled with shell elements

Cross-frames modeled with 

beam (frame) elements

Deck modeled with Solid Elements 

Rebar modeled with 

truss elements



Finite Element Modeling (FEM) - Scenarios
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▪ Later-age Analyses (typically >90 days after placement)

▪ Early-age Analyses (4 hours to 14 days after placement)

▪ Factors investigated:

▪ Drying shrinkage

▪ Temperature histories (sharp drop or increase)

▪ Relative humidity (moisture) histories (sharp drop or sharp increase)

▪ Length of wet-curing time with summer and winter placements

▪ Sensitivity on deck thickness and girder restraint



Finite Element Modeling (FEM) - Validation

Solutions for the Built World Page 25

▪ Model was validated against field strain gauge data

▪ The goal was to verify the global FE model trend VS. actual field behavior

Temperature input for FE Model
Strain output from FE Model against 

field-measured strain data



FEM - Early-age Winter Placement
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Winter placement temperature Average Resultant Longitudinal Stress vs time
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FEM - Later-age Moisture Gradient
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Recorded Relative Humidity from the Field Stress vs time

• Higher RH gradient existed after rain event.

• Increase in tensile stresses at the bottom of the deck ~300 psi



Finite Element Modeling (FEM) - Summary
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▪ Drying shrinkage can contribute up to 300 psi in tensile stress 

▪ Large temperature rises can create an increase in tensile stress by as much 

as 400 psi, underside of deck

▪ Large changes in relative humidity can create an increase in tensile stress 

by as much as 300 psi, underside of deck

▪ Winter curing, heating from below is preferred to heating from the top



WJE’s Recommendations
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▪ Three primary goals of recommendations:

1. Reduction in drying shrinkage

2. Reduction in thermal gradients

3. Reduction in moisture gradients

Reduction in volumetric 

movement
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WJE’s Recommendations

▪ Mixture Proportions 

▪ w/cm of 0.42 to 0.45

▪ Limit total cementitious to 600 lb./yd3 or less

▪ Use of slag cement and fly ash

▪ Lower plastic concrete temperatures to < 75F

▪ Optimized aggregate gradation, likely needed for reduction in 

cementitious content

▪ Larger top sized aggregate



WJE’s Recommendations
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▪ Design and Construction Practices

▪ Summer curing:

– Installation of insulated blankets after peak hydration

– Removal of insulation blankets after 4 to 5 days

▪ Winter curing:

– Heat cure from underside is preferable and provides additional 

pre-compression benefit 

▪ Reduction in moisture gradient - installation of thin-polymer 

overlays at later ages ~ 6 to 9 months after construction



WJE’s Recommendations
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▪ Design and Construction Practices

▪ Increase design thickness of decks to 8 inches minimum

▪ Modify specifications to require staggering of top and bottom 

transverse reinforcing mats
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WJE’s Recommendations

▪ Cracking comparison, before and after WJE’s recommendations

Northbound Southbound

Cracking Comparison
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Thank you!
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