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ML in concrete applications 

• Utilize the semi-empirical rules that inform the relationship between constitutive 

materials/phase chemistry and concrete properties

• Perform predictions on previously untrained datasets

• A large body of publications to predict strength and other properties from mixture 

proportions; optimization of concrete mixtures for strength, durability, cost, CO2 impacts….

• ML is dependent on large, high-quality datasets

Song et al. 2021
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ML in concrete applications 

• After training, traditional ML models are only able to predict on untrained datasets with 

identical input ranges and relationships between variables

• When the proportions and types of ingredients (e.g., cement and supplementary 

cementing material chemistry, admixtures, aggregate type, etc.) change, previously trained 

ML models would not be able to adapt to the changes. 
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ML with missing data

• Missing data is poorly handled in ML models – and data does go missing……

• Most common approach for handling missing data - deletion 

• Data augmentation to fill the missing data gaps

• Decision trees with surrogate splits, use of pattern sub models, or incorporation of auto encoders)

• Statistics-based approaches – mean substitution, interpolation, regression, stochastic 

regression, K nearest neighbor

• Biased estimates

• Adversarial nets to create 1000s of additional data points – convergence to the true model, 

a risk

• Empirically established relationship between the variables (“crude estimation”)
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Transfer learning (TL)

• Lost in the wilderness of neural network’s 

hyperparameters with no idea where to start and 

what to configure???

• No need to train from scratch - Leverage past 

powerful deep learning models and transfer their 

knowledge to the specific domain

https://medium.datadriveninvestor.com/introducing-transfer-learning-

as-your-next-engine-to-drive-future-innovations-5e81a15bb567

https://medium.datadriveninvestor.com/what-you-must-know-about-

transfer-learning-4a6e4cb9fbad

https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567
https://medium.datadriveninvestor.com/introducing-transfer-learning-as-your-next-engine-to-drive-future-innovations-5e81a15bb567
https://medium.datadriveninvestor.com/what-you-must-know-about-transfer-learning-4a6e4cb9fbad
https://medium.datadriveninvestor.com/what-you-must-know-about-transfer-learning-4a6e4cb9fbad
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Transfer learning (TL)

• Operates on the assumption that the source and target datasets lie within a similar domain space 

and that their input and output variables have similar relationships

• Complexity of the TL process depends on the output in the target dataset and the similarity of the 

domain (feature space) between the source and target datasets 

• Domain expansion

• Domain of the target lies somewhat outside that of the source 

• Domain adaptation

• Target output is different, but can be related to the source output
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TL for concrete properties prediction

• For concrete, more often than not, only a limited range of tests are carried out (e.g., 

compressive strength), and other parameters (e.g., elastic modulus, durability) are indirectly 

inferred from the strength results

• Expanding the applicable range of mixture proportions through ML; enhancing the 

predictability of concrete properties with changes in constituents through ML models 

reduces expensive and time-consuming testing. 

• Combines ML with data augmentation and transfer learning 

• Allows prediction of material properties across a diverse range of inputs and types of 

concretes, thus providing a methodology to tackle a wide variety of cross-property 

prediction problems.
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Data sets

Dataset

No. of 

Data 

Records

Output Variables Statistic
OPC

(
kg

m3)

SCM 

(
kg

m3)

Water

(
kg

m3)

Coarse 

Agg. (
kg

m3)

Fine Agg. 

(
kg

m3)
RA (

kg

m3)
Age 

(day)
Source

D-1 1030 f’c 8

Max 540.0 382.0 247.0 1145.0 992.6 0.0* 365.0
(Yeh, 

1998)
Mean 281.2 128.1 181.6 972.9 773.6 0.0* 45.7

Min 102.0 0.0 121.8 801.0 594.0 0.0* 1.0

D-2 526 E 13

Max 597.0 225.1 234.0 1950.0 1301.1 1800.0 28.0
(Han et 

al., 2020)
Mean 338.7 32.3 170.7 563.1 730.7 495.4 28.0

Min 150.0 0.0 108.3 0.0 465.0 0.0 28.0

D-3 228 f’c 6

Max 475.0 71.3 263.9 1253.8 641.8 0.0* 91.0 (Chopra 

et al., 

2016)

Mean 433.9 24.0 213.7 1050.9 524.3 0.0* 58.3

Min 350.0 0.0 178.5 798.0 176.0 0.0* 28.0

D-4 104 f’c and E 6

Max 474.6 273.5 164.9 1231.0 715.5 0.0* 91.0
(Haranki, 

2009)
Mean 280.7 162.0 155.3 1071.1 615.2 0.0* 32.6

Min 116.9 73.0 139.6 735.1 506.1 0.0* 3.0

• Even though D1 and D3 contain similar inputs and outputs, the range of some of the parameter values of 

D3 lie outside the range of D1
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ML details

Model Hyperparameter
Uniform Distribution 

Range

ANN

No. hidden layers [1, 3]

No. starting neurons [10, 55]

Drop rate [0, 0.10]

Random Forest (RF), 

Extra Trees (ET), and 

Gradient Boosted Trees 

(GBT) forests

No. of trees [50, 400]

• Keras neural network framework written in Python to build and train 

the ANNs 

• ANN and Ensemble methods (Random forest RF, Extra trees ET, 

Gradient boosted tree GBT)

• ReLu activation function with a learning rate of 0.001 and an 

RMSprop optimization scheme with backpropagation

• Training of ANN neuron weights using backpropagation 

• Coarse optimization of the hyperparameters - random search pattern
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ML (not TL) predictions

D-1 with original 8 

inputs
D-1 with truncated 7 

inputs

D-2 with original 13 

inputs
D-2 with truncated 7 

inputs

TL via retraining the best-fit ML 

model



Presented at The Spring ACI convention, San Francisco, April 2023

Pearson coefficient for dataset organization

• Pearson correlation coefficients determined for datasets D-1 and D-2 (no input truncation was 

needed for D-3 and D-4) with the original 8 and 13 inputs, and the truncated 7 inputs. 

• Absolute values of the correlation coefficients with respect to E in dataset D-2 for most of the 

ignored terms were less than 0.10. 

D1 D2
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TL details

• In Transfer learning prior knowledge from one domain and task 

can be applied to another domain and task

• 𝒟 = 𝒳, 𝑝(𝒳) , where 𝒳 represents the feature space

• feature space includes the input parameters, such as the 

contents of different ingredients, age

• A task in a domain, 𝒯 = 𝒴, f(. ) , where 𝒴 is the label space (the 

output f’c or E vectors), and 𝑓(. ) is the predictive function that 

relates the features and the labels

• Given a source domain 𝒟𝑆 with a corresponding task 𝒯𝑆, and a 

target domain 𝒟𝑇 with a task 𝒯𝑇, the goal of TL is to improve the 

target predictive function 𝑓𝑇(. ) by using knowledge learned from 

𝒟𝑆 and 𝒯𝑆. Here, 𝒟𝑆 ≠ 𝒟𝑇 and/or 𝒯𝑆 ≠ 𝒯𝑇 . In fact, if 𝒟𝑆 = 𝒟𝑇 and 

𝒯𝑆 = 𝒯𝑇 , this becomes the case of traditional ML

D-1
Source task: 

Predict f’c

Target task: 

Predict E
Source task: 

Predict E
D-2

M

L

T

L D-2
Target task: 

Predict f’c

M

L

T

L
D-1

Traditional ML – separate isolated models

TL – knowledge gained in one task utilized 

for the other  
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TL implementation

• Converting a transductive TL (𝒟𝑆 ≠ 𝒟𝑇 ; and labeled data in 

source and target domains not the same) into an inductive TL 

(labeled data available in both source and target domains)

• Inductive TL allows for the use of a more intuitive parameter 

transfer approach that focuses on shared parameters 

between the source and target domains or prior distribution 

of hyperparameters

• Empirically derived strength-E relationships to provide 

missing target data for training

• Parameter transfer architecture for ANN/CNN

• Model weights act as initial values to retrain the target model
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Data augmentation

Data Set Formula Source

D-1
Ec = 4.7 f ′c ACI 318 19.2.2.1.b (ACI 318-14 Building 

Code Requirements for Structural 

Concrete, 2014)

D-1 Ec = 4.5 f ′c CSA A23 8.6.2.3 (CSA A23.3-04 Design 

of Concrete Structures, 2004)

D-1 Ec = 5.0 f ′c
IS 456 6.2.3.1 (IS 456 Plain and 

Reinforced Concrete Code of Practice, 

2007)

D-2 and D-4 

Model Avg. 1
f ′c =

Ec
4.7

2 ACI 318 19.2.2.1.b (ACI 318-14 Building 

Code Requirements for Structural 

Concrete, 2014)

D-2 and D-4 

Model Avg. 2
f ′c =

Ec
4.63

2
Ravindrarajah and Tam (Sadati, da Silva, 

Wunsch II, & Khayat, 2019)

D-2 and D-4 

Model Avg. 2
f ′c =

Ec − 8.242

0.378
Mellmann (Sadati, da Silva, Wunsch II, & 

Khayat, 2019)

D-4 Model 

Avg. 2
f ′c =

𝐸𝑐 ∗ 1000

𝑤𝑐
1.5 ∗ 0.043

2

ACI 318 19.2.2.1.a (ACI 318-14 Building 

Code Requirements for Structural 

Concrete, 2014) with

𝑤𝑐 = 1922.22
𝑘𝑔

𝑚3
(120

𝑙𝑏

𝑓𝑡3
)

D-4 Model 

Avg. 1
f ′c = 10 ∗

Ec
22

3

Eurocode 2 Table 3.1 (1992-1-1, 2004)

D-4 Model 

Avg. 1

f ′c

=
Ec ∗ 1000

63351 ∗
4700
57000

2 Georgia granite aggregate (Haranki, 

2009)

D-4 Model 

Avg. 1

f ′c

=
Ec ∗ 1000

55824 ∗
4700
57000

2
Miami Oolite limestone (Haranki, 2009)

• Code estimations and empirical equations to provide labeled 

target data for inductive transfer

• Data augmentation helps to change the target from unlabeled 

to labeled – enabling better predictions

• Serve as a guiding basis for the TL models to learn the 

relationship between the inputs and both desired output 

mechanical properties

• Changing the weights of the initial models for E or f’c through 

backpropagation

• Source model acts as initialized weights based on the source 

data rather than the usual randomized weights when first 

generating an ANN model

• Objective function gradients and backpropagation are now 

performed with respect to the target dataset
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Domain expansion and domain augmentation TL
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Domain expansion TL

• Domain expansion case, from dataset D-1 to D-3

• A more generalized model is created from a restricted domain and retrained to account for 

the expanded domain

• ANN based model developed using dataset D-1 re-trained to predict f’c of the dataset D-3

• a more generalized model is created from a restricted domain and retrained to account for the 

expanded domain

No TL TL

Ford et al. Machine Learning with Appl. 2022
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Data augmentation assisted TL

• TL between a source model and a data-augmented target model, where the fundamental 

nature of concrete is different between the datasets D-1 and D-2 (use of different cement 

replacement materials, recycled aggregates)

• Domain adaptation strategy

E prediction of D-1 using 

model-averaged E to retrain 

the model developed for D-2

Relationship between 

experimental f’c and predicted 

E for D-1

• Parameter-TL from D-2 to D-1 (to 

predict E;) generated an ANN model as 

accurate as the initial E prediction 

model that incorporated all 13 of the 

original D-2 dataset inputs

• Source model typically with greater 

diversity and coverage than the target 

model 

• Performing TL from an expanded to a 

more restricted domain is better

Ford et al. Machine Learning with Appl. 2022
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Combining datasets
• No longer assume that the source and target domains are different, by combining data

• Considered that the model-averaged data or transfer-learned data are reasonable 

estimates of true target labels

• Missing labels were provided using: (a) empirically-derived model-averaged data, and (b) 

transfer-learned E and f’c from the domain adaptation models

• Larger amount of data to train, and an expanded domain

Output Model Type RMSE MAE 𝐑𝟐

f’c (MPa) ANN 9.40 ± 1.83 6.53 ± 0.13 0.778 ± 0.008

RF 7.64 ± 0.51 5.14 ± 0.05 0.853 ± 0.001

ET 7.25 ± 0.77 4.67 ± 0.04 0.868 ± 0.001

GBF 7.70 ± 0.62 5.15 ± 0.01 0.851 ± 0.001

E (GPa) ANN 3.62 ± 0.24 2.53 ± 0.02 0.751 ± 0.001

RF 3.20 ± 0.12 2.17 ± 0.00 0.806 ± 0.000

ET 2.95 ± 0.10 1.90 ± 0.01 0.836 ± 0.000

GBF 2.93 ± 0.14 1.92 ± 0.00 0.838 ± 0.000
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Image-based application to composites

• Microstructural analysis

• Finite element analysis (linear/non-

linear) for properties as ground truths

• Training and prediction

• TL to unknown microstructures

   

 

Ford et al. Comp. Mat. Sci 2021
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Image-based application to composites

Target task: Label: 

Stiffness, strength

ML
NCAMP 

data

Inputs: Fiber and 

matrix types, 

Processing (Literature 

+ Results from PP-1)

Simulated 

Micro-

structure, 

FEM

Target task: Label: 

Stiffness, strength, 

toughnessML

FEInputs: 

Microstructures, 

representative of 

materials, processing

M
L

 m
o
d

e
l 

cl
a
ss

e
s

T
L

 m
o

d
e

ls

Inputs: Microstructures of down-selected TPRCs, with 

material and processing parameters; training data from 

FEM, validated by limited experiments

Target task: (a) Strength, E when limited test data 

belonging to the processed TPRCs are available

(b) Peak stress and strain, toughness, energy 

absorption, penetration limit

TL



Presented at The Spring ACI convention, San Francisco, April 2023

TL to large datasets

• TL from one power plant data to corresponding landfill data (Domain expansion)

• TL from one power plant data to another power plant data (Domain adaptation)

• TL from one landfill data to another landfill data (Domain adaptation)

Source ML model Prediction

Target TL model

Transfer learned knowledge

Prediction

Historical fly ash data 

from power plant 

Limited fly ash data 

from landfill
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Conclusions
• Demonstrates the use of TL techniques to predict the compressive strength or modulus of 

elasticity from concrete mixture proportions when such data is not directly available, but 

complementary information is available

• Inductive parameter-transfer learning approach using data augmentation through empirical 

models 

• Development of models to aid

• prediction of E of a conventional concrete dataset from mixture proportions and f’c based on a 

model for E developed from a dataset of concrete with a different domain and features (domain 

adaptation), and 

• the prediction of f’c of a dataset that had parameter ranges outside that of the trained model 

(domain expansion). 

• Shown that TL can be used with an established traditional ML model and trained with a 

smaller dataset corresponding to the target dataset to arrive at improved predictions. 


	Slide 1:    Transfer (machine) learning approaches coupled with target data augmentation to predict the mechanical properties of concrete
	Slide 2: ML in concrete applications 
	Slide 3: ML in concrete applications 
	Slide 4: ML with missing data
	Slide 5: Transfer learning (TL)
	Slide 6: Transfer learning (TL)
	Slide 7: TL for concrete properties prediction
	Slide 8: Data sets
	Slide 9: ML details
	Slide 10: ML (not TL) predictions
	Slide 11: Pearson coefficient for dataset organization
	Slide 12: TL details
	Slide 13: TL implementation
	Slide 14: Data augmentation
	Slide 15: Domain expansion and domain augmentation TL
	Slide 16: Domain expansion TL
	Slide 17: Data augmentation assisted TL
	Slide 18: Combining datasets
	Slide 19: Image-based application to composites
	Slide 20: Image-based application to composites
	Slide 21: TL to large datasets
	Slide 22: Conclusions

