Reduce cement content in concrete by enhancing mechanical properties with chitin nanofibers and nanocrystals

Dr. Somayeh Nassiri, Md Mostofa Haider, University of California Davis

- Dr. Michael Wolcott, Washington State University
- Dr. Carlos Fernandez, Pacific NW National Laboratory

UNIVERSITY OF CALIFORNIA

Chitin

- Second most abundant biopolymer after cellulose
- Glycosaminoglycan-repeating structure like cellulose but acetamide groups at C-2 positions

Sources of Chitin [2]

- ~100 B tons/yr in living organisms [1]
 - Crustaceans, fungi, yeast, insects, other plants/animals

Seafood Waste as Source of Chitin

- Barks from seafood industry: 6-8 million ton/year [1]
- 200,000 tons of shrimps, 35,000 tons of lobsters, and 90,000 tons of crabs processed in the US [2]
 - Mostly composted, discarded in ocean or landfilled, expensive to treat before disposal

[1] Yan, N., & Chen, X. (2015). Sustainability: Don't waste seafood waste. Nature News, 524(7564), 155.
[2] Whistler, ROY L. "CHAPTER 22 - CHITIN." In *Industrial Gums (Third Edition)*Workers pick meat from the lobster, which is rapidly frozen with nitrogen. The tail shells are composted nearby.
GRETA RYBUS FOR THE BOSTON GLOBE

Chitin Nanofibers and Nanocrystals

- Seafood bark: ~15-40% Chitin [1]
- Found in combination with calcium carbonate to provide strong natural habitat
- Chitin nanofibers are wrapped in layers of protein from
 [2]

Rinaudo, Marguerite. "Chitin and Chitosan: Properties and Applications." *Progress in Polymer Science* 31, no. 7: 603–32.
 Huang, W. (2018). Chitin Nanopapers. In *Nanopapers* (pp. 175-200). William Andrew Publishing.

Extraction of Chitin Nanomaterials (ChNM)

Chitin-nanocrystals (Ch-NC): TEMPO-oxidation

Chitin Powder

- OH group in C-6 position selectively oxidized to COOH group.
- Suspension: ~1% solids weight concentration

Extraction of Chitin Nanomaterials (ChNM)

Chitin-nanofibers (Ch-NF): Mechanical fibrillation

Super Mass Collider

- Grinding disc applies compression, shearing and friction forces in a Super Mass Collider
- Combination of 20 µm disc gap, 4-hr griding: 0.82% solids

Characterization of Chitin-Nanomaterials

Size and Morphology

Width	Length	Aspect Ratio
8.7 ± 4 nm	211 ± 80 nm	24

(a) Chitin-nanocrystals (Ch-NC)

Width	Length	Aspect Ratio
16 ± 10 nm	1068 ± 765 nm	7-290

(b) Chitin-nanofibers (Ch-NF)

Characterization of Chitin-Nanomaterials

XRD and Zeta Potential

Zeta Potential (mV):	ChNC	ChNF
DI water	-56.1± 4.5 (pH=7.6)	+3.9 ± 0.7 (pH=6.9)
Pore solution	-28.04 ± 2.6 (pH=12.71)	-24.02 ± 9.1 (pH=12.71)

 Zeta potential: Large negative surface charges in pores solution

$$CrI = \frac{(I_{110} - I_{AM})}{I_{110}} \times 100\%$$

Crystalline index (Crl) based on XRD: 92%

Characterization of Chitin-Nanomaterials

Surface Groups by FTIR & titration methods

• Titration results: ChNC more COOH groups than CHNF

ChNM Type	ChNC	ChNF
Surface Groups (COOH)	0.36 mmol	0.01 mmol

Dispersion by Ultrasonication

Chitin Nanocrystals

- 10 min sonication based on UV-i Spectroscopy
- 30 mins sonication alter the size as seen on TEM after sonication of CNF

Preparation of Cement-Mortar

- Sand:Cement:Water = 2.5:1:0.52
- ChNC: 0.02%, 0.035%, 0.045%, 0.05% & 0.10% (%dry cement by mass)
- ChNF: 0.035%, 0.045%, 0.05%, 0.065% & 0.10%
- Two mixes with superplasticizer (0.10% Ch-NC & 0.10%Ch-NF + 0.10% SP)
- One combination of Ch-NC & Ch-NF (0.05% of each)

Preparation of mortar using a benchtop mixer

Tests of Fresh Properties of Mortar

Flow Table Test for workability

Setting time test by penetration resistance

Flow Table Test Results

- ChNC & ChNF reduce workability due to their high specific surface area & OH groups
- ChNC: lower flow number with more ChNC
 - Max reduction: 0.1%wt ChNC by 26%
- ChNF: max reduction of 15% with 0.1%wt ChNF

Initial & Final Setting Time

ChNC

- 0.05wt% ChNC induce most delay
- Initial set delayed ~30min with 0.05%wt ChNC
- Final set delayed ~30 mins

450 ChNC Initial setting 400 Setting time(min) ChNC Final setting 350 SP_Initial setting 300 250 SP_final setting 200 150 0.025 0.05 0.075 0 Conc.(wt% cement)

14

Initial & Final Setting Time

ChNF

- 0.075wt% ChNF most delay
- Initial setting delayed 40min w/ 0.075wt%
- Final setting delayed 60 min w/ 0.075wt%ChNF

15

Delayed Setting Time Mechanism

- With large <u>anionic</u> <u>surface charges</u>, ChNC and ChNF adsorbed on positively charged clinkers and hydrates
- Disperse them by <u>electrostatic repulsion</u> and delay setting time
- Morphology of ChNF vs ChNC may impose different physical restrictions among clinker particles

ChNF

Tests for Mechanical Properties

Compressive Strength Test

Four Point Bending Test

- Six beams for flexure test at 7 and 28d
- Mid-span deflection measured by LVDT
- Area under loaddeflection for toughness
- 12 specimens from broken beams for compression test at 7 and 28d

Compressive Strength Results

- ChNC
 - 7d: max +9% w/ 0.035 wt% (p-value=0.023)
 - 28d: max +2.5% with 0.02wt% (p-value=0.004)
- ChNF
 - 7d: max +4% w/ 0.1%wt (p-value=0.049)
- Max among all 0.1 wt% ChNF + 0.1 wt% SP
 - 7d: +25% and 28d: 7%, for

Flexural Strengths Results

- ChNC
- 7d: max 15% w/ 0.035 wt% (p-value= 0.0007)
- 28d: 7~9% increase

Flexural Strengths Results

ChNF

- bell-shaped curves 7 & 28 days
- 28d: +20% w/ 0.05 wt%
- ChNF+ChNC mix
 - 28d: +17%

At equal doses, ChNF better than ChNC

20

Fracture Energy Results

ChNF

- ChNF enhance fracture energy
- Max 49% w/ 0.065 wt% ChNF at 28d

ChNC

 0.045 %wt ChNC improve fracture energy by ~30%

Dispersion of ChNM in Mortar Beams Total Organic Carbon (TOC)

- Organic carbon content evaluated for three samples from bottom portion of beams after flexural test
- Chitin-mortar samples possess significantly more organic carbon than control
- ChNMs present in beams fracture surface
- ChNMs dispersed well in beam supporting improvements seen in flexural strength

	Total Organic
Mix	%Carbon
Control	0.0027
0.05ChNC	0.0607
0.05ChNF	0.1233

Total organic %Carbon in specimens from the broken beam face

Possible Mechanisms

- ChNMs filler role under compression, but a more significant enhancement of composite strength seen under tension
- Possible reason bridging of nano cracks and pores, delay in crack propagation before peak load
- Better flexural performance with ChNF over ChNC for same dose attributed to greater length, higher aspect ratios, and fiber-like structure of ChNFs

FTIR of ChNM-Mortar

- Shifting of Si–O stretching band to higher wavenumber evidence of polymerization of silicate group. Higher peaks for both 7 and 28D at this wavenumber for ChNC and ChNF.
- Region 3400 to 3700 cm⁻¹ reflects change occurring in cement–water system due to hydration. Higher and wider peak for ChNC and ChNF compared to control at 7 and 28d

Impact on Silica Chains in C-S-H Structure Solid-State ²⁹Si nuclear magnetic resonance

 Assess number of bonds between adjacent silicate tetrahedrons in 7d and 28d samples

Polymerization degree (PD) =
$$\frac{Q^2}{Q^1}$$

Degree of Hydration (DH) =
$$\frac{Q^1 + Q^2}{Q^0 + Q^1 + Q^2}$$

Figure from Tang, S., Wang, Y., Geng, Z., Xu, X., Yu, W., & Chen, J. (2021). Structure, fractality, mechanics and durability of calcium silicate hydrates. *Fractal and Fractional*, *5*(2), 47.

Solid-State ²⁹Si Results

- ChNC: DOH improved at 28d by 7%
- ChNF: 28d PD and DOH improved by 41% and 16% compared to control

A Promise for Cement Reduction?

pavement..."[1]

"... heavy volumes of traffic, higher structural capacity can be achieved by increasing the bending resistance of the

Conclusions

- Chitin nanomaterials improved flexural strength and fracture energy of mortar without adversely affecting compressive strength of others
 - ChNF improved flexural strength up to 24% (optimal dose 0.05 wt%)
 - ChNC optimal dose lower (0.035 wt%) with a max 9% improvement over control
 - FTIR showed more silicates and less amount of portlandite with ChNMs on 28d
 - NMR showed higher 28d polymerization in C-S-H and higher 28D DOH
- ChNMs may bridge nano/micropores and delay crack growth. This effect more pronounced in ChNF due to their higher length and aspect ratio

Conclusions-Cont'd

- ChNMs induced slight reduction to flow of mortar
- 0.05%wt ChNC and 0.075%wt ChNF delayed final set time by 30 and 40 min
- Chitin from seafood waste show excellent potential for nanocrystals and nanofibers for cementitious systems
- Working on scaling up to concrete, studying impact on microstructure and durability

- Haider, M., Jian, G., Zhong, T., Li, H., Fernandez, C. A., Fifield, L. S., ... & Nassiri, S. (2022). Insights into setting time, rheological and mechanical properties of chitin nanocrystals-and chitin nanofibers-cement paste. <u>Cement</u> <u>and Concrete Composites</u>, 104623.
- Nassiri, S., Chen, Z., Jian, G., Zhong, T., Haider, M. M., Li, H., ... & Wolcott, M. (2021). Comparison of unique effects of two contrasting types of cellulose nanomaterials on setting time, rheology, and compressive strength of cement paste. <u>Cement and Concrete Composites</u>, 123, 104201.
- Zhong, T., Jian, G., Chen, Z., Wolcott, M., Nassiri, S., & Fernandez, C. A. (2022). Interfacial interactions and reinforcing mechanisms of cellulose and chitin nanomaterials and starch derivatives for cement and concrete strength and durability enhancement: A review. <u>Nanotechnology Reviews</u>, 11(1), 2673-2713.