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Concrete 3D Printing
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Sustainable 3D printed binder systems

• Generally mortars are printed – higher cement content

• Use of cement-free binders as a potential option

• Evaluation of the material design parameters and rheology

• Linkage between material design and processing parameters

• Special formulations using geopolymers (e.g., foams) for insulation 
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Critical Elements
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Material design for printability

• Ease of extrusion through a tapered nozzle, and the stability of the printed shape

Table 2: Binder proportions for the final printable mixtures

Mixture 

ID

FFA

(%)

Slag

(%)

OPC

(%)

LS

(%)

Al 

powder 

(%)

Alkali activator (%)
Liquid/powder

ratio
NaOH

(%)

Na2SO4

(%)

F85L15 85 15 5 0.27

F70L30 70 30 10 0.27

F50C30L20 50 30 20 1 2 0.30

F50S30L20 50 30 20 5 0.35

F50S30L19A1

50 30 19 1
n=0.05*, Ms=1.5**

0.30

* n= Na2O/total powder (mass based); NaOH is the source of Na2O.
** Ms= SiO2/Na2O (molar based), Sodium silicate solution is the source of SiO2.

 

(a) (b) (c) (d)
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Rotational and Extrusional Rheology
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Yield stress and time dependence

• Printability window – based on YS

• Yield stress corresponding to the final time beyond which it cannot be extruded and printed –

upper bound

• Printability window found to scale relatively well with the initial setting time of the pastes - setting 

time could be used as a surrogate parameter to estimate the printability window
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Extensional rheology

• Quantifying adhesive (tendency to stick to a surface) and cohesive (internal strength at rest) nature of the 

pastes – influences interlayer bond

• Determined using absolute value of peak force and displacement 

• Energy required to separate the paste under a normal tensile force indicative of the influence of material 

composition on the bonding capacity

• Adhesive energy scales with the alkalinity of the activator - >2X adhesive energy for OPC pastes

(b)
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Extrusion rheology

• A plasticity approach to analyze the extrusion rheology of dense suspensions

• Benbow-Bridgwater model 𝑃𝑒𝑥𝑡 = 𝑃1 + 𝑃2 = 𝜎0 + 𝛼𝑉𝑒𝑥𝑡
𝑚 ln

𝐴𝑏
𝐴𝑑

+
𝑀𝐿

𝐴𝑑
𝜏0 + 𝛽𝑉𝑒𝑥𝑡

𝑛 = 𝜎𝑌 ln
𝐴𝑏
𝐴𝑑

+
𝑀𝐿

𝐴𝑑
𝜏𝑤
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Nair et al. J. Amer. Cer. Soc. 2021

Nair et al. Cem. Concr. Compos. 2022
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Extrusion rheology

• Mixture characterization approach

• Pressure-displacement relationships

• Related to shear rheology, but 

represents different mechanics of 

flow, more relevant to extrusion-

based 3D printing

• Time dependence well captured

Nair et al. J. Amer. Cer. Soc. 2021

Alghamdi Et al. Mat and Design 2021
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Extrusion rheology

• Extrusion yield stress (σY) and the wall shear stress (τw) predicted by Benbow-Bridgewater model can be 

considered as the extrusion process-related parameters and used to design mixtures

• Shear YS measured through rotational rheology is correlated to extrusion YS

• Extrusion YS > 20 kPa for shape stability

• Extrusion YS useful in the apriori determination of the effectiveness of chosen mixture compositions and 

geometry in ensuring efficient extrudability and printability

(a) (b)
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Compressive and Flexural Strengths

• Temperature effects in compressive strength

• Slag/cement incorporation for better 28-day strengths of ambient cured specimens

• Strengths for several commercial applications achieved 
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Porous geopolymeric matrices for 3D printing

• A physical foaming process using surfactants – better bubble stability under 3D printing

• Control of the foam volume: foam volume fraction < jamming transition (0.64 for 3D disordered foams) 

are flowable and thus not printable. 

• Control of skeletal density and cohesiveness

• 70% fly ash – 30% limestone powder; SiO2/Na2O of the activator = 1.0; Na2O/total powder = 0.07

• Surfactant : 1-3% by mass of the binder

• Mass-based liquid-to-binder (l/b) ratio of 0.60 (including liquid surfactant and water in the activator)

• Modified mixing procedure to develop a “jammed foam” along with solid skeleton to achieve stability –

staged addition of water, surfactant, mixing process

All-at-once addition Staged addition
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Foam expansion, shape retention

• Foam expansion: 𝐹𝐸 % =
𝑉𝐹−𝑉𝐼

𝑉𝐼
× 100

• YS and Plastic viscosity; Viscosity recovery

(a) (b)

(b)(a)

• Excellent consistency and smooth flow during 

extrusion

• Foamed suspensions with relatively higher slump 

values were also successful in retaining their 

shapes because of their low densities
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Yield stress, capillary number

• Foams with void volume fractions greater than the jamming transition 

known to be yield stress fluids, just as conventional cement pastes

• Below the yield stress the foams behave as viscoelastic solids and above the 

yield stress as non-Newtonian fluids

• Rheological response  - competition between the skeleton yield stress that 

tends to deform the bubbles and the capillary stress acting on the bubble 

surface that resists this deformation

• Plastic capillary number  Cp =
τy

( Τ2T R)
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Capillary number and foam performance

• Foams with void volume fractions greater than the jamming transition known to be yield stress fluids, just 

as conventional cement pastes

• Below the yield stress the foams behave as viscoelastic solids and above the yield stress as non-Newtonian 

fluids

• Rheological response  - competition between the skeleton yield stress that tends to deform the bubbles 

and the capillary stress acting on the bubble surface that resists this deformation

• Plastic capillary number  Cp =
τy

( Τ2T R)

• Capillary number as a function of time enables an understanding of the rheology of foamed suspensions 

from those of their skeletal pastes
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Capillary number and YS

• Surface tension scales between 0.06 N/m and 0.03 N/m between 1% and 3% surfactant 

dosage, and the bubble size ranges between 25 m and 100 m

• Cp for 1% surfactant = 0.02

• Cp for 2%, 3% = >0.10

• Cp < 0.10 – T dominant

• Τy invariant of ;  < 0.50 (1%S)

• For  > 0.64 (2% and 3%S) Cp > 0.10 

• Bubbles behave as softer inclusions

• YS reduced
(d) (e) (f)

(c)(b)(a)
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Buildability

• Requires the mixtures to be able to recover most of its initial viscosity after the extrusion effect is simulated

• 3 stages - initial viscosity at rest or before extrusion (before printing; from 0 to 60 s), viscosity during the 

simulated extrusion process (during printing; 60 s to 90 s), and viscosity of the simulated extruded 

suspensions (after printing; 90s to 150 s) 

• Lower viscosity when shear rate is high; further lowering of shear rate recovers the viscosity (85-95%) –

comparable to or higher than that of OPC and geopolymer pastes

(a) (b) (c)
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Pore structure

500 m(e)500 m(c)500 m(a)

100 m(b) 100 m(d) 100 m(f)

S = 1% S = 2% S = 3%
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Thermal performance
• At ~70% porosity, thermal conductivity of 

0.15 W/m-K (more than that of EPS/XPS –

0.05 W/m-K)

• Can be incorporated with air voids – lattice 

printing of the foam

Concrete 
wall

Printed 
foam

(b)(a)
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Summary

• Use of alkaline activators in lieu of water decreases the shear YS and increases the cohesiveness, 

similar to the use of a superplasticizer in conventional OPC systems

• A printability window based on concurrent measurement of time-dependent yield stress and 

extrusion printing of a filament of the paste – scales with the setting time

• Extrusion rheology experiments coupled with the Benbow-Bridgwater model facilitates the 

extraction of extrusion yield stress - related to shear yield stress and extensional (tack) properties 

of the virgin paste

• Foamed systems different surfactant contents where foam jamming transition is achieved

• Below the jamming transition ( = 0.64), foams deform, shown through the capillary number

• Viscosity recovery of the chosen foamed matrices were high, demonstrating excellent buildability

• We propose the use of 3D-printed foam layer architecture such that dual-porosity systems - with 

smaller pores in the foam and larger pores in between the printed paths - can be printed
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Thank you

Narayanan.Neithalath@asu.edu

Narayanan.Neithalath@asu.edu
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