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C2SMART Tier 1 University Transportation Center (UTC)

• C2SMART is a solution-oriented research 

center taking on some of today's most 

pressing urban mobility challenges.
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Outline

• Target Bridge Overview

• Wired vs Wireless Sensor

• Structural Health Monitoring (SHM)

• Digital Twins / Finite Element Modeling (FEM)

• Weigh-in-Motion (WIM)

• Lessons Learned
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Target Bridge Overview

• Robert Moses built the bridge beginning in 1944.

• The Triple Cantilever: A unique structure with two levels 

of traffic and Promenade.

• Based on A.A.S.H.O. 1941 Specifications

• H20-S16 Vehicular Loading

• One of the most heavily 

traveled roadways 

in New York City

• ADT = 153,000 vehicles

• ADTT = 25,000 trucks 4



Project Overview

• Evaluation of the concrete bridge from data fusion.
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Wired vs Wireless Sensors
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Closure?

Cable?

Power?

Wired sensor 
• Pros: Reliable data collection.  

No battery replacement 
effort is required.

• Cons: Hassle to lead all the 
cables. Cable might obstruct. 

Wireless sensor
• Pros: Easy to install and 

maintain.  No obstruction to 
the traffic due to the cable.

• Cons: Periodic battery 
replacement is required.

Battery?



Wireless Sensor Network

• Accelerometer

• Tiltmeter

• Strain Transducer

• Battery: 2wk(3 Ch) ~ 1m (1 Ch) @ 128 Hz
• Range: up to 1.25 mile (typical 150 ft) 
• Data Collection Frequency: 1 hr ~ 4096 Hz
• Collection Mode: periodic, burst, thresholds
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Evaluation of Deck Condition using Acceleration

• Mean of maximums acceleration vs. qualitative inspection

8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
cc

e
le

ra
ti

o
n

 (
g)

Deck Joint Condition

Poor Fair GoodPoor-Fair Fair-Good

J1-2

J2-3

J4-5

J5-6

M-6

J6-7

J8-9

J7-8

J9-10

J3-4

High

Low

• This result indicates that the structure may 
have further deterioration in regions that 
cannot be visually inspected.



Distributed FO Sensor

• Rugged FO Sensor vs.

High Resolution FO Sensor
– Long measurement range

– Rugged jacket for harsh environment

– Spatial resolution at every 4-in.
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DFO Validation

• DFO and FSG were compared.
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FSG

External FO

Internal FO

- Before cracking, the strains recorded from both 
sensors match well.

- After cracking, most of the FSG strains are higher 
than the FO strains at the same load level. This 
phenomenon is attributed to bonding issues.

- Therefore, DFO has a potential use for long-term 
monitoring in detecting alarming strain levels.



Digital Twins and Finite Element Modeling

• Target spans were modeled using 3D FEA Tool,  ABAQUS

– Material properties = existing inspection load rating reports and as-design values.

– Static and dynamic tests were performed after closing entire bridge.
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Calibration / No Traffic
FEM &
BrIM Calibration Trucks



FEM Calibration: Fusion of SHM and FEM

• FEM was calibrated using two trucks 

(Class 9 and Class 7)

• Free vibration was used to determine 

the natural frequency.

• Natural frequency and strain data were 

also used for calibration.
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Weigh-In-Motion (WIM) Installation

• Two types of WIM sensors
– Live load spectra using PVDF & Quartz
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PVDF Sensors Quartz Sensors

• PVDF sensors are less accurate than Quartz.
• PVDF overestimates for lighter truck and 

underestimates for heavy trucks. 
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WIM Calibration

• Five (5) trucks were used for 

calibration of Quartz sensors
– 2 x Class 9, 1 x Class 6, 2 x Class 5
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Standards GVW Single Tandem Wheel

Quartz Results
(maximum error, %)

4.4 12.4 7.9 21.9

Compliance (%) 100 100 100 99

ASTM Type III Target 6 15 10 20

883T + 172T

882T + Trailer



Data Fusion: WIM and SHM 

• Regular traffic was used to correlate between SHM and WIM.

– SHM provides strain and acceleration.

– WIM provides weight and speeds. 
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y = 0.1423x + 0.5395
R² = 0.7217
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Lessons Learned

• Wireless Sensor

– Communication range & battery and power consumption

• Rugged DFO 

– Suitable for bridge application and reliable for long-term

• Quartz sensor

– Highly accurate data for live load spectra

• Fusion of SHM and FEM

– Calibrate the FEM for predicting future responses and remaining service life.

• Fusion of SHM and WIM

– Load and resistance of the bridge

– Understand the factors that affect the structure response.

– Weight is the key factor for the strain while speed is the key factor for the vibration.
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