Sustainable Polymer Modified Concrete for 3D Concrete Printing

Moneeb Genedy & Sriramya Nair Civil & Environmental Engineering, Cornell University

Outline

- Introduction & Background
- ➤ Materials & Mix Design
- Mechanical Properties
- > Rheological Characterization
- ➢ 3D-printed performance
- Challenges and Future Work

Conclusions

Introduction & Background

Global 3D-Printing Construction Market in 2021 (\$11.3M)

Building (Commercial, Residential, Industrial)Infrastructure

3D Printing Construction Market Size, Share & Trends Analysis Report <u>https://www.grandviewresearch.com/industry-analysis/3d-printing-constructions-market</u>

Introduction & Background

US 3D-Printing Construction Market Prediction

- \succ Annual growth rate ~ 100%
- ➤ Expected to reach ~ \$1B by 2030

aci

3D Printing Construction Market Size, Share & Trends Analysis Report <u>https://www.grandviewresearch.com/industry-analysis/3d-printing-constructions-market</u>

Introduction & Background

Tetrahedral model of 3D printed concrete

CONCRETE

CONVENTION

Murcia, D. H., Genedy, M., & Taha, M. R. (2020). Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete. Construction and Building Materials, 262, 120559.

Materials & Mix Design

Mix Proportions [kg/m³]

Mix	Cement	Fly Ash	Silica Fume	Sand	Water	SBR	HRWR
С	780.6	133.8	200.7	943.2	223.0	0	23.9
S5	741.5	127.1	190.7	896.0	211.8	50	22.7
S10	702.5	120.4	180.7	848.9	200.7	100	20.4
S15	663.5	113.7	170.6	801.7	189.5	150	17.4
S20	624.4	107.0	160.6	754.5	178.4	200	13.9
S25	585.4	100.3	150.6	707.4	167.2	250	10.4

 \gg W/Cm = 0.2

 \blacktriangleright Aggregate maximum nominal size = 2mm

SBR: Styrene-Butadiene Rubber

C: Control Mix, S5: Mix with 5% SBR, S10: Mix with 10% SBR, etc.

Mechanical Properties

Compressive Strength

As expected, increasing SBR content resulted in reduction in compressive strength

Mechanical Properties

On the other hand, increasing SBR content resulted in increase in flexural strength

Flexural Strength

CONVENTIO

Murcia, D. H., Genedy, M., & Taha, M. R. (2020). Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete. Construction and Building Materials, 262, 120559.

Effect of Rheological Properties

S: contour length (m)

Murcia, D. H., Genedy, M., & Taha, M. R. (2020). Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete. Construction and Building Materials, 262, 120559.

CONCRETE CONVENTION

Rheological Testing

Murcia, D. H., Genedy, M., & Taha, M. R. (2020). Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete. Construction and Building Materials, 262, 120559.

Effect of SBR Content (Yield Stress)

Effect of SBR Content (Thixotropy)

3D-Printing

In-house custom-built 3D-Printer

- 2 ft x 2ft x 10 ft printing area
- Augur Extrusion
- Printing Volume: 20 L
- Minimum Volume: 4 L

3D-Printing

In-house custom-built 3D-Printer

3D-Printing

In-house custom-built 3D-Printer

3D-printed performance

Layer-to-Layer bond strength

S15 showed 42% Higher Shear Strength

3D-printed performance

Buildability

- Single and double walled samples were printed.
- Both C and S15 collapsed after 6 layers of single walled print.

Conclusion

- Incorporating SBR into the concrete mixture resulted in a decrease in compressive strength while increased the flexural strength.
- > Increasing the content of SBR results in decrease in both static yield stress and thixotropy.
- Printable SBR-modified concrete mixture were achieved.
- > No interlayer debondig were observed in short beam test for SBR-modified concrete.
- > Improving the printability while maintaining printability is a major challenge.

Research Team

nair.cee.cornell.edu

