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Performance-based Wind Design

* Implementation of performance-based wind design
would allow some degree of inelastic deformations
during extreme wind events

« While inelastic deformation demands would be
significantly less than those for a strong ground motion,
loading duration and number of loading cycles is a
concern

* There iIs thus need to evaluate the behavior of critical
structural members under loading histories -
representative of extreme wind events “
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Coupled-Wall Systems

« Coupled wall systems are
commonly used in high-rise
construction because of their
lateral stiffness and strength
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« Coupling beams connecting walls
are typically subjected to high
shear stresses and deformations

* In non-seismic regions, coupling

beams are designed either as
slender or deep beams
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Motivation

* Results from recent research at UCLA have indicated
stable behavior of RC coupling beams under simulated
wind loading when subjected to shear stresses up to =

7.5\ f. (psi)

« Behavior of coupling beams under much larger shear
stresses induced by a severe windstorm is not known

« Use of steel fiber reinforced concrete may lead to
Improved behavior of coupling beams under severe
wind loading while allowing a simplification in
reinforcement detailing
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Steel Fiber-Reinforced Concrete (SFRC)

* Most steel fibers have deformations for better anchorage

- Steel fiber length typically ranges between 1.2 and 2.4 in.,
with length-to-diameter ratios between 50 and 80. Fiber
tensile strength ranges between 160 and 330 Ksi.

» Maximum practical dosage = 200 Ib/yd3
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SFRC Coupling Beams

« Use of SFRC in earthquake-resistant coupling beams
with aspect ratio between 2.0 and 3.0 allowed
elimination of diagonal reinforcement and reduction of
transverse reinforcement detailing (Parra-Montesinos

et el., 2017)

~

(Parra-Montesinos et el., 2017)
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_Experimental Program
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b) Isolated coupling beam

a) Coupled wall c) Test configuration
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Experimental Program

Specimen ID CB1 CB2 CB3 CB4
bxhxl, (in.) 8 x 16 x 48 8.5x 16 x 48

Target Stress, 15 \/_’ 10 \/—,

Vu (ps|) f C f C
Aspect Ratio (I, /h) 3.0

Target f', (psi ) 8000

Fiber Volume
Fraction, V; (%) 0.65 0-50
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Coupling Beam Design
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Test Setup
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End Block Replicating the

End Region of a Wall
P 4 = =

Precast SFRC
Coupling Beam
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Wind Loading Protocol

Loading Stages No. of Cycles Load Type
o 0.15M,, 500
- Force-
% 0.4M, >00 Controlled
o~ 0.75M,, 75
- 1.26 10 -

<Yy Displacement-
1.56, 2 Controlled

= 1.26, 10
@)
T 0.75M,, 75 ST
g 0.4M, 500 Controlled
g 0.15M, 500 P

where; M, =nominal moment at yield and Gy = rotation at yield

Source: Mr. John Hooper (MKA)
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500 cycles 500 cycles  75cycles  Scycles 2 cycles
@0.15M, @040M, @O075M, @126, @156, Symmetrical ramp-down
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Force-controlled Displacement-controlled Force-controlled

where; M, = nominal moment at yield and 6, = rotation at yield
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Hysteresis
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Overall Behavior

« Similar cracking pattern in all specimens.

« Maximum residual flexural crack width of 1/24 in.
« Maximum residual diagonal crack width of 1/64 in.
* Minor spalling at the bottom end of the beams

* No yielding in transverse reinforcement
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Drift Components

 Drift contributions from bar slip, flexural deformations,
shear deformations, and interface sliding

. T
i H
Bar slip Flexural Shear Interface sliding
deformations deformations - ."ﬁﬂ
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= Total m Bar Slip m Beam Flexure
®m Beam Shear ® Interface Sliding
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CBI1 CB2 CB3 CB4
Specimen ID -

Drift Contribution at 1.59y
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Normalized Average Stiffness

Specimen Eclsec/Eclgat
ID 1.56,
CB1 0.10
CB2 0.10
CB3 0.13
CB4 0.12
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0.75M,

120, 150, 126, 0.75M,

Loading stage
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« Restraint against beam axial expansion due to cracking
and reinforcement yielding led to axial compressive forces

during tests

= Positive Direction ® Negative Direction

4, (%)
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P/f

CBI1 CB2 CB3 CB4 =
Specimen ID

Axial compression at 1.56,
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Conclusions

« SFRC coupling beams with traditional beam reinforcement
exhibited only minor damage during simulated wind loading and

shear stresses as high as 14,/f, (psi)

* Rotation demand of 1.56, resulted in moderate yielding of
longitudinal reinforcement, but no yielding in transverse
reinforcement

« Drift due to flexural deformations and concentrated rotations at
the beam-wall interface ranged between approximately 60 and
70% of applied drift. Shear deformations accounted for most of
the remaining drift

« Normalized stiffness ranged between 0.11 and 0.14 of the gross
stiffness during ramp up phase at 0.75M,, and between 0.08 and

0.11 during ramp-down loading phase nle”.
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Thank you for your attention!
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