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Climate change is impacting the earth
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Temperature will continue increasing before the carbon neutrality goal is achieved

https://climateknowledgeportal.worldbank.org/overview



Cement production involves high CO, emission

High-temperature calcination for producing cement clickers is energy intensive
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Cement production is responsible for 7% global CO, emissions in 2021

https://ourworldindata.org/CO,-emissions



Strategy to decarbonize concrete

Through integrating low carbon ingredients, advanced processing methods,
and new construction techniques

Low-carbon cost-effective high-performance concrete
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This presentation focuses on carbonation sequestration



Concrete can sequester CO,

Cementitious materials-based concrete contains calcium ions (Ca?*), which
can induce the following reaction:

Ca’* + €05 = CaCO;
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CO, sequestration can take place in three stages

Manufacturing of concrete

Pre-treatment

Raw materials of concrete
are cured in a CO,-rich
chamber

Mixing

CO, is injected into the
fresh concrete during the
wet mixing process

Curin
Concrete is cured in a

CO,-rich chamber with a
controlled environment

Carbonated
steel slag

As-received
steel slag

CoO,
)

HO oy
CaCo,

https://www.carbon8.co.uk/

--------
..

00
e

) | CONCIEte

Water

https://www.carboncure.com/

3. Precipitation of CaCO,

E.

~
4 TN

2. Dissolution of Ca*’

Liu and Meng, 2021, 2022




Comparison of the three technologies

Methods for CO, sequestration Advantages Disadvantages

Pre-treatment stage: + Recycle industrial waste - Difficult for large-scale

: implementation as it
requires large reactor and
can be energy extensive.

+ High sequestration rate
(5-30%)

+ Applicable to cast-in-place - Low sequestration rate
construction (0.3%, by mass of cement
by Sean et.al., 2017)

- Negative impact on

workability
Curing stage: + High sequestration rate - Difficult for cast-in-place

H + (10-20%) implementation

+ Time-efficiency and

‘LLL energy-saving
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A new method for CO, sequestration in concrete

« The method was proposed to enable cast-in-place concrete
application with enhanced CO, sequestration rate.

 CO, is bubbled in calcium rich solution for preparation of uniformly
distributed CaCO; suspension, which is then added into mixing

water for concrete batching.

CaCO, suspension production Concrete mixing Concrete products
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Compatible with existing industrial facilities and convenient for large-scale production



Preparation of CaCO, suspension

Cl suspension: is prepared by injection of CO, into different concentration
of Ca(OH), with controlled speed at 30 L/min to form CaCOs suspensions.
The injection was continued until the mass of suspension became stable,

indicating that no more CO, was absorbed. An air stone was used to

distribute CO.,.

CP suspension: is prepared with different content of nano-CaCO, powders.

Gas in Gas out
- 1 :; ik -
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Ca(OH), + CO, — CaCO; ==

CO, bubble

Air stone s\ C2C0:P b

Properties of nano-CaCO, powder

Particle size 30-60 nm
Bulk density 0.68 g/ml
pH 8.0-9.0
Moisture content | 0.5%
CaCO, content >97.5%
MgO content <0.5%




Investigated mixtures

« Ten mixtures with different concentrations of CaCO, suspension
prepared by the CO, injection (Cl) method and nano-CaCO, powder
(CP) method were investigated.

Designation Cement Synthesized CaCO, Nano-CaCO, powder Water HRWR

Control 1000 0 - 400 2.5
Cl-0.5% 998 2 - 400 2.5
Cl-1% 996 4 - 400 2.5
Cl-2% 992 8 - 400 2.5
Cl-4% 984 16 - 400 2.5
Cl-6% 976 24 - 400 2.5
CP-1% 996 - 4 400 2.5
CP-2% 992 - 8 400 2.5
CP-4% 984 - 16 400 2.5
CP-6% 976 - 24 400 2.5
Note:

CI-1% represents the mixture with 1% CaCO, suspension using the proposed method.
CP-1% represents the mixture with 1% CaCO, suspensions using nano-CaCO; powder.
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Dispersion of nano-CaCO, powders

When the nano-CaCO,; powders to prepare concrete, the proper method to
uniformly disperse the nano particles is critical, as nano particles are prone to

agglomerate. The agglomeration significantly compromises the mechanical
and durability of cementitious materials.

In this study, the CaCO; suspension prepared with nano CaCO; powder was
dispersed in the ultrasonic bath at 20k Hz for 10 min before use.

This process makes the nanomaterials hard to be utilized in large-scale
concrete production.
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Fresh and hardened properties

« Adding CaCO, suspension decreases the flowability, and the reduction rate
by the CI method was higher than CP method.

« Compared with the reference mixture, the 28-day compressive strength was
increased by 16% by the Cl method (2% of nano-CaCO,) and by 6% by the
CP method (2% of nano-CaCOQO,).
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Hydration kinetics and thermal analysis

Both the Cl and CP methods promote
cement hydration. Compared with the

reference mixture,

» the presence of peak is accelerated;,——

» more hydration products are produced
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Porosity

* The use of nano-CaCO, reduced the capillary pores and pore sizes.

* The porosity of the Cl mixtures was 8%-20% lower than that of the CP
mixtures when the nano-CaCO4 concentration was the same.
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Particle size distribution of CaCO, In suspension

« CaCO, particles in the suspensions produced by the CI have finer
particle size, better dispersion and homogeneity than that produced
by the CP method with or without ultrasonic dispersion.
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Stabilization of CaCO4 suspension using polymer

 polyacrylic acid (PAA) can be used for stabilizing the CaCO; suspension for
long period as the hydroxy groups on the surface of PAA can interact with
calcium ions via ion coupling and thus prevent the agglomeration of CaCOs.

* Preliminary studies showed that the suspension dispersion level is stable in 3
days using 0.2-0.4% PAA.
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SEM observations of CaCO, In concrete

« The SEM-EDS images show that the proposed CO, injection method
can lead to better dispersion of the nano-CaCO; particles in concrete.

Cl-2% CP-2%

M, te white part represents CaCOj,

SEM-EDS, Green color represents CaCO,
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Dispersion level of CaCO, In concrete

* To validate the dispersion level of CaCO,, sample was divided into 16 pieces
for measuring CaCO, content using TGA.

* |t is observed that the data points for ClI-4% sample are less dispersive than

those of CP-4% sample, demonstrating that the Cl method leads to better
CaCO, dispersion level than the CP method.
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Life-cycle carbon footprint

« The carbon footprint of investigated mixtures was calculated
using the below equation.

C =Y ,(cej—cs;)m;/Fcu

C is the strength normalized carbon emission of a mixture;

ce; is the unit carbon emission of the i-th ingredient of the mixture (i=1, 2, 3, ..., n);

cs; is the unit carbon sequestration of the i-th ingredient of the mixture (i=1, 2, 3, ..., n);
m, is the mass of the i-th ingredient of the mixture;

Fcu is the 28-d compressive strength of the mixture.

« The unit carbon emission and carbon sequestration of the raw
materials are listed in below table.

No. Ingredient Carbon emission (kg/kg) CO, sequestration (kg/kg)
1 Cement 0.83

2 HRWR 0.72

3 Water 0.00

4 Calcium hydroxide 0.683 0.595

5 Nano-CaCO, powder 0.505
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Strength normalized carbon emission

 Life-cycle carbon footprint analysis results showed that the CI
method reduces the strength-normalized carbon emission by up to
15%. The reduction rate is 40% higher than the CP method at the
same CaCOs concentration.
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Coat wastes with nano-CaCO; on the surface

* Procedure: (1) mix off-specification fly ash (OSFA) with Ca(OH),
solution; (2) inject CO, into the mixture; and (3) filtrate the coated
OSFA patrticles.

CO, — {O]

Nano-CaCO,
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Wet carbonation Filtration and drying
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Original OSFA Coating process Coated OSFA

Porous (water absorption), Denser surface, higher
low density, low strength density, higher strength
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Mixture design

* Four mortar mixtures were designed and tested

Mixtures Cement Flyash CC FA@CC Sand Water HRWR
FAO 1 0 0 0 1.00 0.36 0.01
FA20 0.80 0.09 0 0 1.00 0.36 0.01

CC-FA20 0.80 0.09 0.02 0 1.00 0.36 0.01

CC@FA20 0.80 0 0 0.11 1.00 0.36 0.01
FAO (the reference or control mixture): without OSFA
FA20: with 20% OSFA (uncoated original OSFA)
CC-FA20: with 20% OSFA and nano-CaCO4 powder
CC@FAZ20: with 20% OSFA coated by nano-CaCOj

]

av .:.“;‘: L OO O OSFA
$ e d CaCO, powder

y oo%ooo

CC@FA

O CaCO; coating

STEVENS INSTITUTE of TECHNOLOGY

22



Compressive strength

« Compared with the reference mixture (FAO), replacing cement with 20%
OSFA (FA20) reduced the 28-day compressive strength by 20%

* Incorporating nano-CaCO,; powder (CC-FA20) enhanced the 28-day
compressive strength of mixture FA20 by 16%

» Using the OSFA with the nano-CaCO, coating (CC@FAZ20) increased
the 28-day compressive strength of mixture FA20 by 32%

Compressive strength (MPa)
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Hydration kinetics

 Direct incorporation of nano-CaCO, powder
accelerated and increased the hydration
peak compared with the reference mixture.

* Replacing the nano-CaCO, powder with the
OSFA with the nano-CaCO, coating highly
increased the hydration peak.
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Pore structure

Compared with the reference mixture (FAQ), replacing cement with 20%
OSFA (FA20) increased the porosity by 30%

Using the nano-CaCO,; powder (CC-FA20) reduced the porosity by 17%
Using the nano-coated OSFA (CC@FA20) reduced the porosity by 26%
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Conclusion

1 This research proposed an alternative approach to utilize CO2 to
prepare low-carbon cementitious materials with multiple
advantages over the existing approaches:

* High CO:2 sequestration efficiency and reaction rates

* Produced uniformly dispersed nano-CaCOs3 particles with low energy
consumption

* High mechanical properties

* Availability for cast-in-place and precast concrete applications
d Through CO: pre-treatment, the porous waste is nano-coated,
and using the nano-coated waste in concrete enhanced the

mechanical properties. This method is more effective than
directly adding nano-CaCOs powder into concrete.
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