

ACHIEVING LOW-CARBON CONCRETE WITH HIGH MECHANICAL PROPERTIES USING CACO₃ SUSPENSION PRODUCED BY CO₂ SEQUESTRATION

Presenter: Weina Meng Assistant Professor

Stevens Institute of Technology Department of Civil, Environmental and Ocean Engineering Advanced Concrete Technology (ACT) Lab

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Climate change is impacting the earth

Temperature will continue increasing before the carbon neutrality goal is achieved

Cement production involves high CO₂ emission

High-temperature calcination for producing cement clickers is energy intensive

Cement production is responsible for 7% global CO₂ emissions in 2021

Strategy to decarbonize concrete

Through integrating low carbon ingredients, advanced processing methods, and new construction techniques

Intelligent design based on machine learning

This presentation focuses on carbonation sequestration

Concrete can sequester CO₂

Cementitious materials-based concrete contains calcium ions (Ca²⁺), which can induce the following reaction:

CO₂ sequestration can take place in three stages

Manufacturing of concrete

 $\frac{Pre-treatment}{Raw materials of concrete}$ are cured in a CO₂-rich chamber

https://www.carbon8.co.uk/

<u>Mixing</u>

CO₂ is injected into the fresh concrete during the wet mixing process

Curing

Concrete is cured in a CO₂-rich chamber with a controlled environment

Comparison of the three technologies

Methods for CO ₂ sequestration	Advantages	Disadvantages	
Pre-treatment stage:	+ Recycle industrial waste	- Difficult for large-scale	
Seraper Seraper Nozze Pump and	+ High sequestration rate (5-30%)	implementation as it requires large reactor and can be energy extensive.	
Mixing stage:	+ Applicable to cast-in-place	- Low sequestration rate	
CO ₂ supply	construction	(0.3%, by mass of cement	
		by Sean et.al., 2017)	
		- Negative impact on	
		workability	
Curing stage:	 + High sequestration rate 	- Difficult for cast-in-place	
	(10-20%)	implementation	
	+ Time-efficiency and		
	energy-saving		

A new method for CO₂ sequestration in concrete

- The method was proposed to enable cast-in-place concrete application with enhanced CO₂ sequestration rate.
- CO₂ is bubbled in calcium rich solution for preparation of uniformly distributed CaCO₃ suspension, which is then added into mixing water for concrete batching.

Compatible with existing industrial facilities and convenient for large-scale production

Preparation of CaCO₃ suspension

- Cl suspension: is prepared by injection of CO₂ into different concentration of Ca(OH)₂ with controlled speed at 30 L/min to form CaCO₃ suspensions. The injection was continued until the mass of suspension became stable, indicating that no more CO₂ was absorbed. An air stone was used to distribute CO₂.
- CP suspension: is prepared with different content of nano-CaCO₃ powders.

Properties of nano-CaCO₃ powder

Investigated mixtures

 Ten mixtures with different concentrations of CaCO₃ suspension prepared by the CO₂ injection (CI) method and nano-CaCO₃ powder (CP) method were investigated.

Designation	Cement	Synthesized CaCO ₃	Nano-CaCO ₃ powder	Water	HRWR
Control	1000	0	-	400	2.5
CI-0.5%	998	2	-	400	2.5
CI-1%	996	4	-	400	2.5
CI-2%	992	8	-	400	2.5
CI-4%	984	16	-	400	2.5
CI-6%	976	24	-	400	2.5
CP-1%	996	-	4	400	2.5
CP-2%	992	-	8	400	2.5
CP-4%	984	-	16	400	2.5
CP-6%	976	-	24	400	2.5

Note:

CI-1% represents the mixture with 1% $CaCO_3$ suspension using the proposed method. CP-1% represents the mixture with 1% $CaCO_3$ suspensions using nano-CaCO₃ powder.

Dispersion of nano-CaCO₃ powders

- When the nano-CaCO₃ powders to prepare concrete, the proper method to uniformly disperse the nano particles is critical, as nano particles are prone to agglomerate. The agglomeration significantly compromises the mechanical and durability of cementitious materials.
- In this study, the CaCO₃ suspension prepared with nano CaCO₃ powder was dispersed in the ultrasonic bath at 20k Hz for 10 min before use.
- This process makes the nanomaterials hard to be utilized in large-scale concrete production.

Fresh and hardened properties

- Adding CaCO₃ suspension decreases the flowability, and the reduction rate by the CI method was higher than CP method.
- Compared with the reference mixture, the 28-day compressive strength was increased by 16% by the CI method (2% of nano-CaCO₃) and by 6% by the CP method (2% of nano-CaCO₃).

Hydration kinetics and thermal analysis

Porosity

- The use of nano-CaCO₃ reduced the capillary pores and pore sizes.
- The porosity of the CI mixtures was 8%-20% lower than that of the CP mixtures when the nano-CaCO₃ concentration was the same.

Particle size distribution of CaCO₃ in suspension

 CaCO₃ particles in the suspensions produced by the CI have finer particle size, better dispersion and homogeneity than that produced by the CP method with or without ultrasonic dispersion.

Dynamic light scattering analyzer Note: both suspensions were diluted to 0.5%

• CaCO₃ particles tend to agglomerate with retention time.

Stabilization of CaCO₃ suspension using polymer

- polyacrylic acid (PAA) can be used for stabilizing the CaCO₃ suspension for long period as the hydroxy groups on the surface of PAA can interact with calcium ions via ion coupling and thus prevent the agglomeration of CaCO₃.
- Preliminary studies showed that the suspension dispersion level is stable in 3 days using 0.2-0.4% PAA.

Xu et.al., 2019

Without PAA With 0.2% PAA With 0.4% PAA

SEM observations of CaCO₃ in concrete

The SEM-EDS images show that the proposed CO_2 injection method • can lead to better dispersion of the nano-CaCO₃ particles in concrete.

CP - 2%

SEM, the white part represents CaCO₃

SEM-EDS, Green color represents CaCO₃

Dispersion level of CaCO₃ in concrete

- To validate the dispersion level of CaCO₃, sample was divided into 16 pieces for measuring CaCO₃ content using TGA.
- It is observed that the data points for CI-4% sample are less dispersive than those of CP-4% sample, demonstrating that the CI method leads to better CaCO₃ dispersion level than the CP method.

Life-cycle carbon footprint

 The carbon footprint of investigated mixtures was calculated using the below equation.

 $C = \sum_{i=1}^{n} (ce_i - cs_i) m_i / \text{Fcu}$

C is the strength normalized carbon emission of a mixture; ce_i is the unit carbon emission of the *i*-th ingredient of the mixture (*i* = 1, 2, 3, ..., *n*); cs_i is the unit carbon sequestration of the *i*-th ingredient of the mixture (*i* = 1, 2, 3, ..., *n*); m_i is the mass of the *i*-th ingredient of the mixture; Fcu is the 28-d compressive strength of the mixture.

• The unit carbon emission and carbon sequestration of the raw materials are listed in below table.

No.	Ingredient	Carbon emission (kg/kg)	CO ₂ sequestration (kg/kg)	
1	Cement	0.83	-	
2	HRWR	0.72	-	
3	Water	0.00	-	
4	Calcium hydroxide	0.683	0.595	
5	Nano-CaCO ₃ powder	0.505	-	

Strength normalized carbon emission

 Life-cycle carbon footprint analysis results showed that the CI method reduces the strength-normalized carbon emission by up to 15%. The reduction rate is 40% higher than the CP method at the same CaCO₃ concentration.

Coat wastes with nano-CaCO₃ on the surface

Procedure: (1) mix off-specification fly ash (OSFA) with Ca(OH)₂ solution; (2) inject CO₂ into the mixture; and (3) filtrate the coated OSFA particles.

Mixture design

Four mortar mixtures were designed and tested

Mixtures	Cement	Fly ash	CC	FA@CC	Sand	Water	HRWR
FA0	1	0	0	0	1.00	0.36	0.01
FA20	0.80	0.09	0	0	1.00	0.36	0.01
CC-FA20	0.80	0.09	0.02	0	1.00	0.36	0.01
CC@FA20	0.80	0	0	0.11	1.00	0.36	0.01

FA0 (the reference or control mixture): without OSFA FA20: with 20% OSFA (uncoated original OSFA) CC-FA20: with 20% OSFA and nano-CaCO₃ powder CC@FA20: with 20% OSFA coated by nano-CaCO₃

Compressive strength

- Compared with the reference mixture (FA0), replacing cement with 20% OSFA (FA20) reduced the 28-day compressive strength by 20%
- Incorporating nano-CaCO₃ powder (CC-FA20) enhanced the 28-day compressive strength of mixture FA20 by 16%
- Using the OSFA with the nano-CaCO₃ coating (CC@FA20) increased the 28-day compressive strength of mixture FA20 by 32%

Hydration kinetics

- Direct incorporation of nano-CaCO₃ powder accelerated and increased the hydration peak compared with the reference mixture.
- Replacing the nano-CaCO₃ powder with the OSFA with the nano-CaCO₃ coating highly increased the hydration peak.

Pore structure

- Compared with the reference mixture (FA0), replacing cement with 20% OSFA (FA20) increased the porosity by 30%
- Using the nano-CaCO₃ powder (CC-FA20) reduced the porosity by 17%
- Using the nano-coated OSFA (CC@FA20) reduced the porosity by 26%

Conclusion

- This research proposed an alternative approach to utilize CO₂ to prepare low-carbon cementitious materials with multiple advantages over the existing approaches:
- High CO₂ sequestration efficiency and reaction rates
- Produced uniformly dispersed nano-CaCO₃ particles with low energy consumption
- High mechanical properties
- Availability for cast-in-place and precast concrete applications
- Through CO₂ pre-treatment, the porous waste is nano-coated, and using the nano-coated waste in concrete enhanced the mechanical properties. This method is more effective than directly adding nano-CaCO₃ powder into concrete.

Acknowledgement

• Graduate students

Zhuo Liu

Jiang Du

• Sponsors and collaborators:

National Science Foundation

U.S. Army

Thanks for watching!

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE