
Overview of the AASHTO Code Provision Process

ACI Session – ACI's Role in Bridge Code Development April 3, 2023

> Lee Marsh PE PhD Technical Fellow WSP-USA

> > CONCRETE CONVENTION

International Building Code Process

AASHTO Documents - Seismic Design for Example

• Specifications

- LRFD Bridge Design Specifications (Seismic Force-Based Design, FBD)
- LRFD Movable Highway Bridge Design Specifications (FBD)
- <u>Guide Specifications</u> for:
 - LRFD Seismic Bridge Design (uniquely viewed as spec-based alternate to FBD)
 - Seismic Isolation Design
 - Bridges Subject to Tsunami Effects
 - Accelerated Bridge Construction
- Guidelines
 - Performance Based Seismic Design of Highway Bridges (in press)

AASHTO Technical Committees – Partial List

- T-1 Security
- T-2 Bearings and Expansion Devices
- T-3 Seismic Design
- T-4 Construction
- T-5 Loads and Load Distribution
- T-10 Concrete
- T-14 Structural Steel Design

For a full list see:

https://bridges.transportation.org/ technical-committees/ list-of-technical-committees/

NCHRP Projects as Source Documents

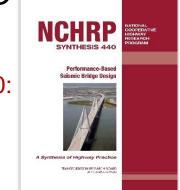
- Once NCHRP projects are complete, their recommendations may generate proposed changes to AASHTO specifications.
- Often a required work product of a NCHRP project is recommendations for improvements of AASHTO documents.
- NCHRP teams may, at the request of AASHTO one or more technical committees, draft a ballot item for AASHTO

Synthesis 532: Non-Conventional Bridge Seismic

 Synthesis sa

 Beisnic Besign gr

 Seismic Besign gr


 Bisnic Conventional Bridge

 Difference

 Difference

 A synthesis of Highway Practic

Synthesis 440: PBSD

Guidelines

for PBSD

osed AASHTO Guid

AASHTO Ballot Item Process

- 1. With the support of one or more states, propose ballot item
- 2. With the support of one or more technical committees, draft ballot item
- 3. Technical committee review and approval
- 4. Assemble all ballot items for the annual COBS meeting
- 5. States review all ballot items, approx. 4 months
- 6. Annual COBS meeting further technical committee discussion
- 7. Advance ballot item to full group
- 8. Vote (each state has one vote)
- 9. Approval by simple majority

ACI Ballot Approval Process

Excerpt from: Concrete International December 2022

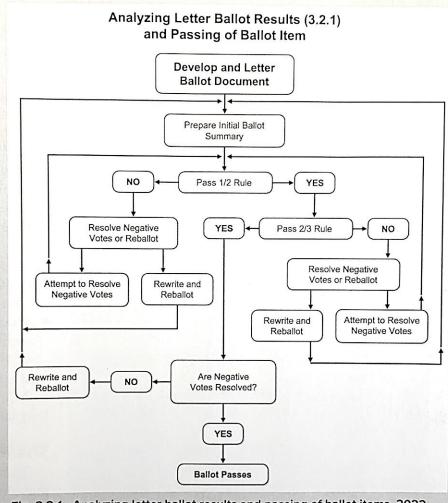


Fig. 3.2.1—Analyzing letter ballot results and passing of ballot items, 2022 ACI Technical Committee Manual. "Pass 1/2 Rule" means at least half of all eligible voting members must cast an affirmative vote. "Pass 2/3 Rule" refers to the requirement that the number of affirmative votes must be at least twice the number of negative votes

ems, 2022 st half of all 3 Rule" refers a at least twice CONCRETE CONCRETE

AASHTO Ballot Item Format

- Subject
- Technical Committee
- Type Revision, Addition, New Document
- Specifications Involved
- Date
- Agenda Item
- Other Affected Articles
- Background
- Anticipated Effect on Bridges
- References
- Other

2014·AASHTO·BRIDGE·COMMITTEE·AGENDA·ITEM: "

 $\textbf{SUBJECT::} LRFD \cdot Bridge \cdot Design \cdot Specifications: \cdot Section \cdot 3, \cdot Articles \cdot 3.10.9.2 \P$

TECHNICAL COMMITTEE: T-3 Seismic¶

<u> </u>
$\blacksquare \cdot \text{REVISION} \rightarrow \rightarrow \blacksquare \cdot \text{ADDITION} \rightarrow \rightarrow \blacksquare \cdot \text{NEW} \cdot \text{DOCUMENT}$
$\square \cdots DESIGN \cdot SPEC \rightarrow \square \cdots CONSTRUCTION \cdot SPEC \rightarrow \square \cdots MOVABLE \cdot SPEC \P$
□ ··MANUAL·FOR·BRIDGE → □ ··SEISMIC·GUIDE·SPEC → □ ··COASTAL·GUIDE·SPEC¶
DATE PREPARED: \rightarrow 1/10/14¶ DATE REVISED: \rightarrow ******
DATEREVISED: →
1
AGENDA · ITEM: Section Break (Continuous)
Item#1¶
1
Delete the third paragraph of Article 3.10.9.2.¶
1
Change the first paragraph of Article C3.10.9.2, accordingly:
These provisions arise because, as specified in Article 4.7.4, seismic analysis for bridges in Zone 1 is not generally
required. These default values are used as The minimum connection design forces of this Article are used in lieu of
determining such forces through rigorous analysis. The division of Zone 1 at a value for the an acceleration
coefficient, As, of 0.05 recognizes that, in parts of the country with very low seismicity, seismic forces on
connections are very relatively small. However as outlined below, the intent of this Article is to prevent
connections from becoming unintended weak links in the seismic lateral load path. Accordingly, the minimum
connection forces specified in this Article are intended to be sufficiently conservative to prevent premature failure
and are not intended to precisely reflect the expected dynamic seismic forces. See C3.10.7.1 for a description of
typical elements considered to be connections, and note that a connection, as considered in this Article, may be an
element that simply restrains a member and may not physically connect to that member, such as transverse shear
keys. Additionally, anchorage design and detailing for connections should be completed far enough into the
adjacent member to ensure that premature or unintentional local failure is prevented. Similarly, the design of a
girder support pedestal should consider the connection forces specified in this Article, since failure of a pedestal
above the main pier cap could potentially lead to loss of span support.
1
Replace the second paragraph of Article C3.10.9.2 with:

Examples of Recent Ballot Items

- 2014 <u>minor revision</u> Modification of Seismic Zone 1 and SDC A connection force requirements (T-3 Committee, 2 documents)
- 2022 <u>major revision</u> Adoption of Risk-Targeted Ground Motions (T-3 and T-5 Committees, 3 documents)
- 2021 <u>new document</u> Guidelines for Performance-Based Seismic Design of Highway Bridges (T-3 Committee)

Abbreviations

- AASHTO American Association of State Highway and Transportation Officials
- AHJ Authority Having Jurisdiction
- BSSC Buildings Seismic Safety Council
- COBS Committee on Bridge and Structures
- FEMA Federal Emergency Management Agency
- FHWA Federal Highway Administration
- NCHRP National Cooperative Highway Research Program
- NEHRP National Earthquake Hazard Reduction Program
- NIST National Institute of Standards and Technology
- NSF National Science Foundation
- RNS Research Needs Statements (TRB)
- SCOR Subcommittee on Research (TRB)
- TRB Transportation Research Board

THANK YOU!

