ACI Concrete Convention (Spring 2023) in San Francisco, CA, USA

Shear Strength Modeling for Squat Walls with Boundary Elements

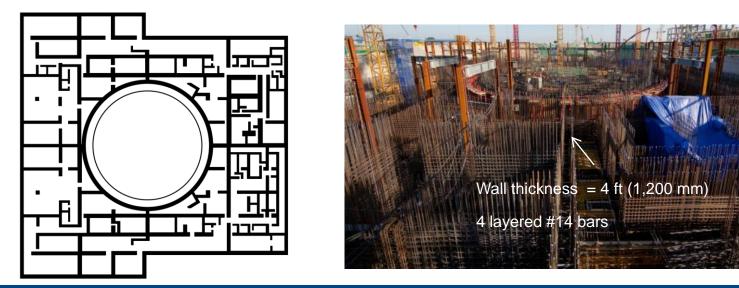
Resilience, Failure Mitigation, and Preservation of Concrete Bridges and Structures, Part 1 of 2

Yosemite B (1:30 PM - 3:30 PM)

Ju-Hyung Kim¹⁾ and Hong-Gun Park²⁾

(presenter) Post-doc., Department of Architecture and Architecture Engineering, Seoul National University, South Korea
 (advisor) Professor, Department of Architecture and Architecture Engineering, Seoul National University, South Korea

- Research Background
- Shear Failure Modes of Flanged Squat Walls
- Analytical Model
- Simplified Design Equation
- Summary and Conclusions

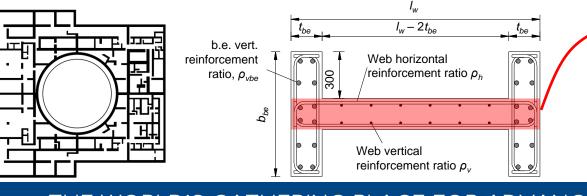

Problem statement

• Seismic Design: Overly reinforced structures in nuclear power plants (elastic behavior under design basis EQ.)

+ complex geometry \rightarrow construction quality degradation \rightarrow 264 voids were detected in two

containment buildings (Source: Nuclear Safety and Security Commission)

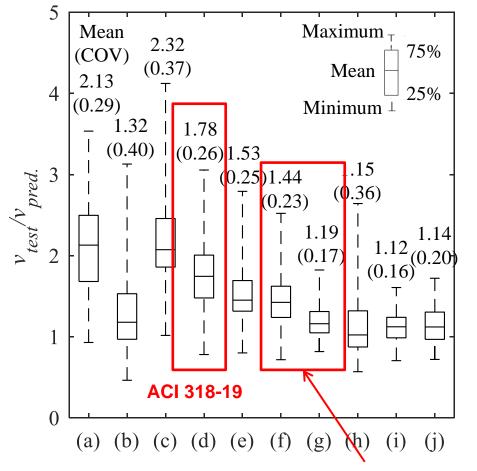
- Seismic performance evaluation: Uncertainties in the evaluation of the actual seismic capacity of RC walls (how safe ?)
- Limitations of empirical models for squat walls including shear strength equation of ACI 318-19 (or ACI349-13) (minimize safety margins & uncertainties)



Research Background

Discrepancies in shear strength models of squat walls + boundary elements

	Well geometry as a modeling perometer					Reinforcement ratio as a modeling parameter				Material		
		Wall geometry as a modeling parameter				Web		Boundary element		strength		
Shear strength model	Wall height <i>h_w</i>	Wall length <i>I_w</i>	Web thickness <i>t_w</i>	Width of B.E. <i>b_{be}</i>	Thickness of B.E. t _{be}	Horizontal ρ_h	Vertical ρ_v	Horizontal $ ho_{hbe}$	Vertical $ ho_{vbe}$	f _c '	f _y	Axial load
ACI 318-19 (ACI 2019)	0	0	0	Х	Х	0	Х	Х	Х	0	0	X
ASCE/SEI 43-05 (ASCE 2005)	0	0	0	Х	Х	0	0	Х	Х	0	0	0
Barda et al. (1977)	0	0	0	Х	Х	Х	0	Х	Х	0	0	0
Wood (1990)	X	0	0	Х	Х	Х	0	Х	Х	0	0	X
Gulec and Whittaker (2011)	0	0	0	0	0	Х	0	Х	0	0	0	0
Kassem (2015)	0	0	0	Х	Х	0	0	Х	Х	0	0	X
Moehle (2015)	X	0	0	Х	Х	Х	0	Х	X	0	0	0
Luna and Whittaker (2019)	0	0	0	Х	Х	0	0	Х	Х	0	0	0



THE WORLD'S GATHERING PLACE FOR ADVANCING

11.5.4.3 V_n shall be calculated by: Web thickness * length $V_n = (\alpha_c \lambda \sqrt{f'_c} + \rho_t f_{yt}) A_{cv}$ (11.5.4.3) where: concrete + horizontal rebar $\alpha_c = 3$ for $h_w / \ell_w \le 1.5$ $\alpha_c = 2$ for $h_w / \ell_w \ge 2.0$ α_c varies linearly between 3 and 2 for $1.5 < h_w / \ell_w < 2.0$

ACI 318-19 11.5.4 In-plane shear

Research Background

Current practices rely on approximate (empirical) methods to determine the capacity of squat walls with boundary elements, leading to discrepancies in shear strength prediction.

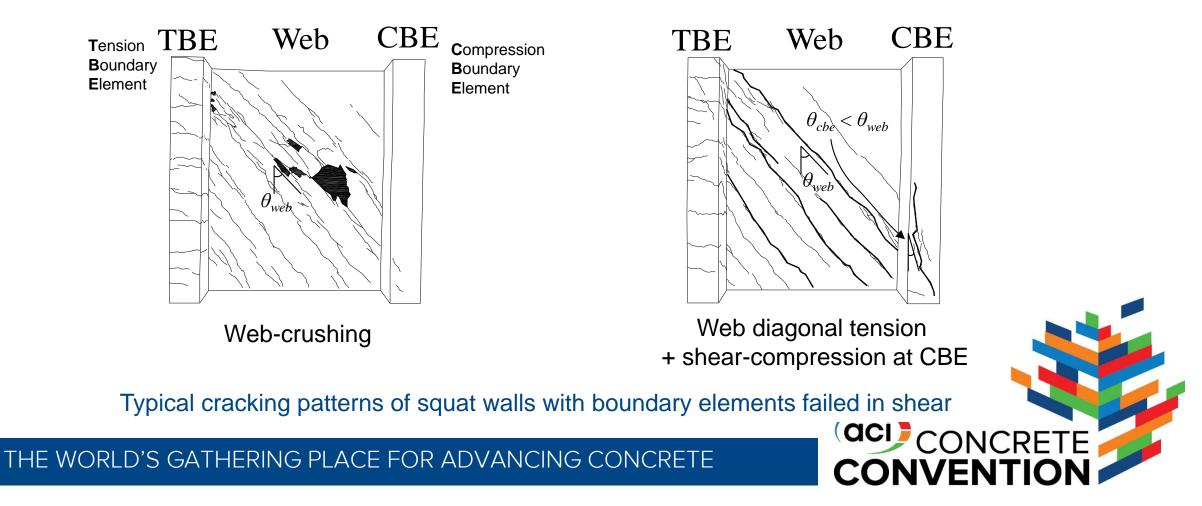
ASCE 43-05 & Gulec and Whittaker (2011) (currently used in seismic fragility analysis of wall structures in nuclear power plants)

How?

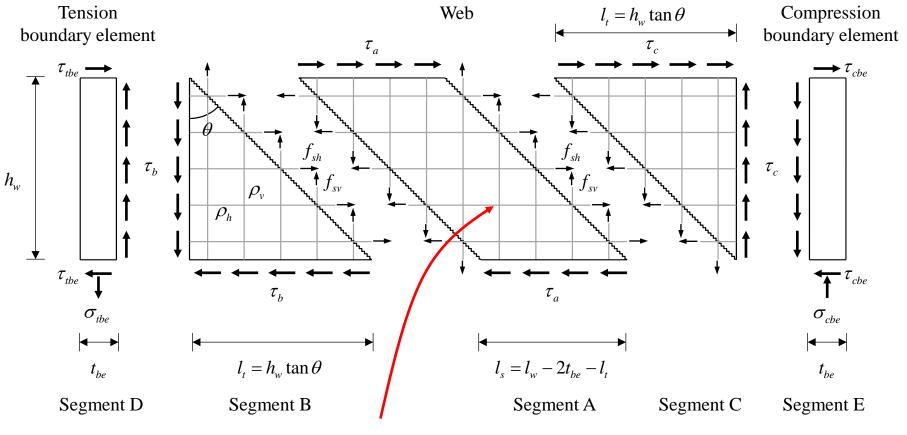
- Existing studies demonstrated that shear strength was increased by virtue of boundary elements.
- How to quantify the shear strength contribution of the boundary elements ?
 - → Mechanics based methodologies to predict the shear strength of squat walls with boundary elements without empirical coefficients

What ?

 Proposed analytical model-based shear strength equation for flanged squat walls (incorporating the shear strength contribution of boundary elements)



Shear Failure Modes of Flanged Squat Walls

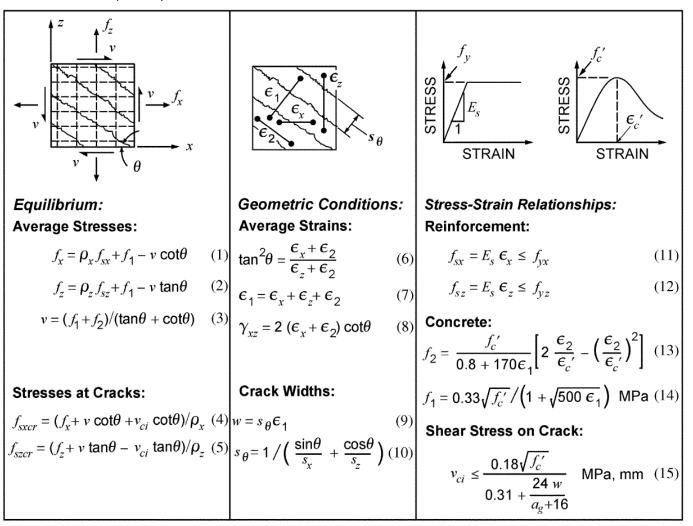

Experimental programs

Kim and Park. 2020.11. Shear and shear-friction strengths of squat walls with flanges. ACI Structural Journal, 117(6), 269-280.

Kim and Park. 2022.03. Shear strength of flanged squat walls with 690 MPa reinforcing bars. ACI Structural Journal, 119(2), 209-220.

Force equilibrium based on a simplified crack pattern

≈ Response of shear panel subjected to pure shear:

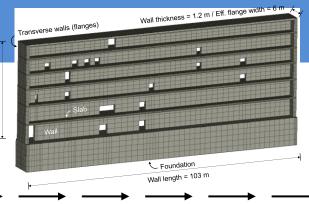

Modified Compression Field Theory (Vecchio and Collins 1986)


CONVENT

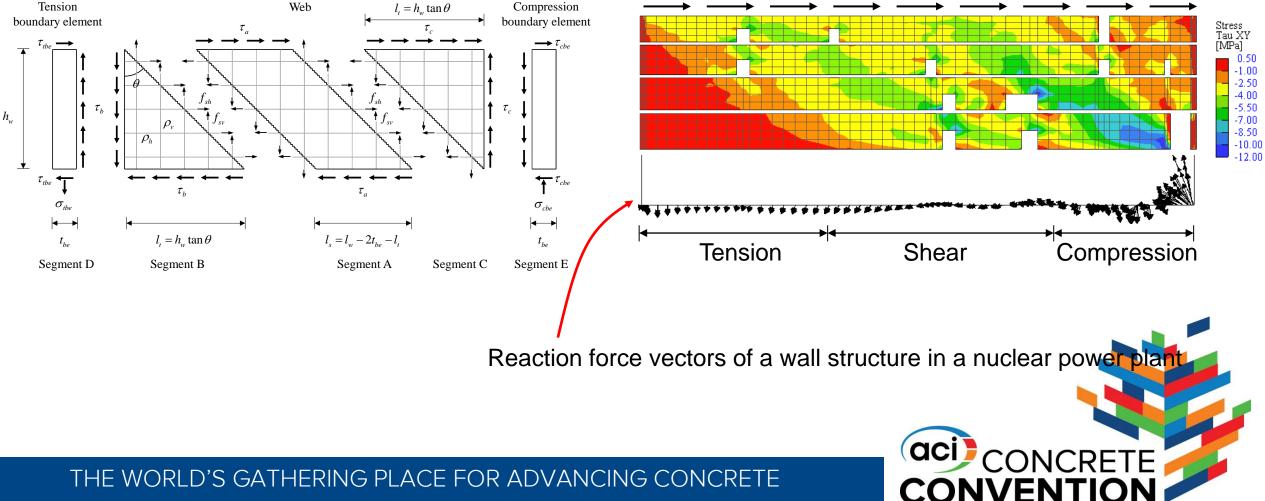
Summary of MCFT

THE WORLD'S GATHERI


Bentz. et al. (2006)

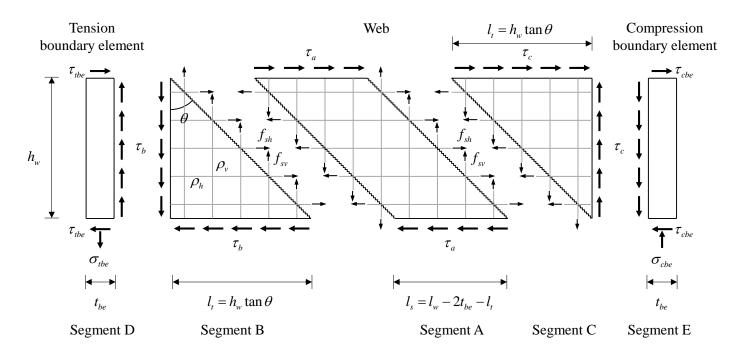


Force equilibrium based on a simplified crack pattern



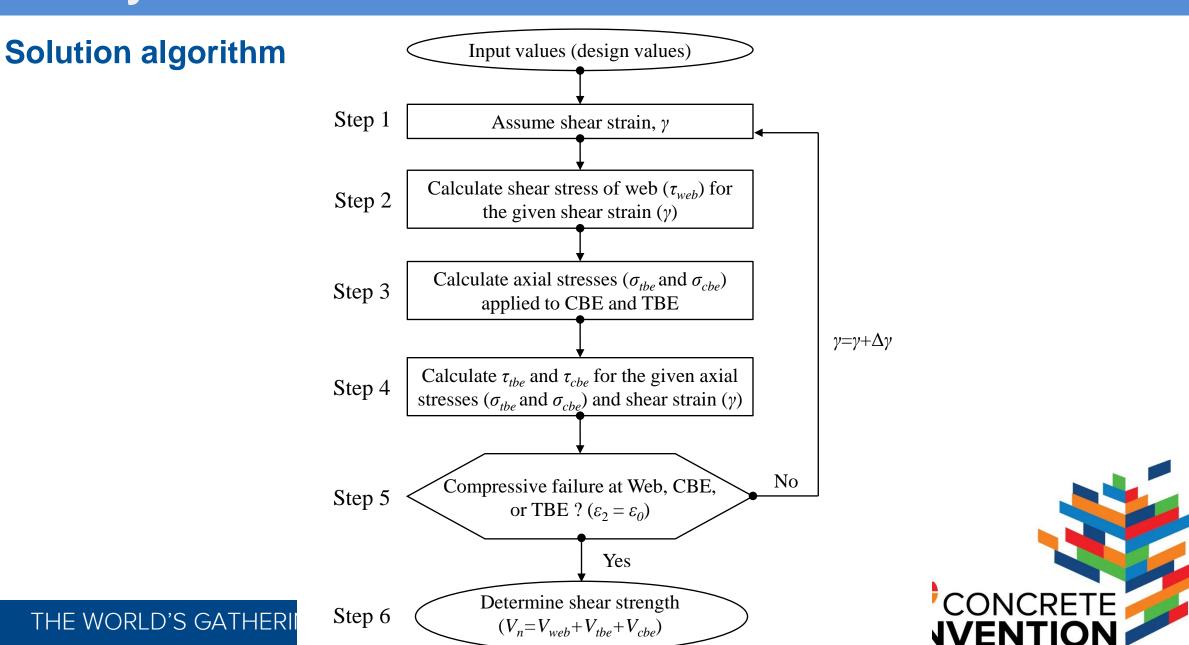
10/26

Force equilibrium based on a simplified crack pattern



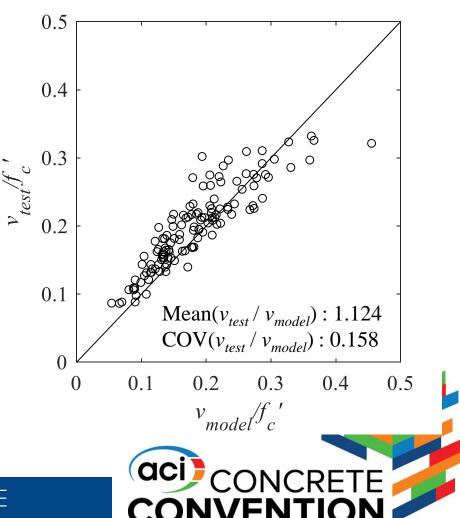
11/26

Lateral loading

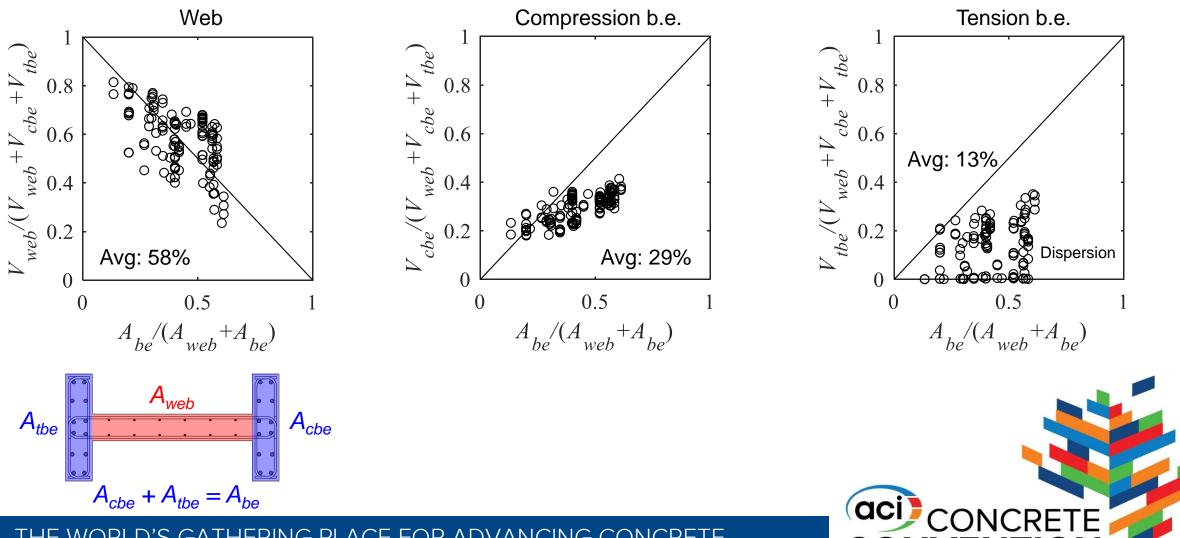

Force equilibrium based on a simplified crack pattern

$$\begin{split} V_{model} &= V_A + V_B + V_C + V_D + V_E = V_{web} + V_{cbe} + V_{tbe} \\ &= \tau_{web} A_{web} + \tau_{cbe} A_{cbe} + \tau_{tbe} A_{tbe} \end{split}$$

Requires iteration to determine the ultimate strength (until failure of one segment)



Validation


Database (123 squat wall test specimens)

Design variables	Minimum	Maximum
Wall thickness, <i>t_w</i> (mm)	70	203
Wall length, I_w (mm)	800	3960
Wall height, h_w (mm)	401	2619
Aspect ratio, h_w/I_w	0.21	1.38
Thickness of boundary element, t_{be} (mm)	75	360
Width of boundary element, <i>h_{be}</i> (mm)	79	1500
Concrete compressive strength, f_c (MPa)	13.7	110.7
Rebar yield strength, f_{y} (MPa)	272.3	754.2
Horizontal reinforcement ratio of web, ρ_h (%)	0.25	2.80
Vertical reinforcement ratio of web, ρ_v (%)	0.26	2.80
Boundary element horizontal reinforcement ratio, ρ_{hbe} (%)	0.05	4.93
Boundary element vertical reinforcement ratio, $ ho_{vbe}$ (%)	0.48	14.35
Axial load ratio, $N/(A_a f_c)$ (%)	0	27

Predicted (v_{model}) vs. Tested (v_{test}) shear strengths

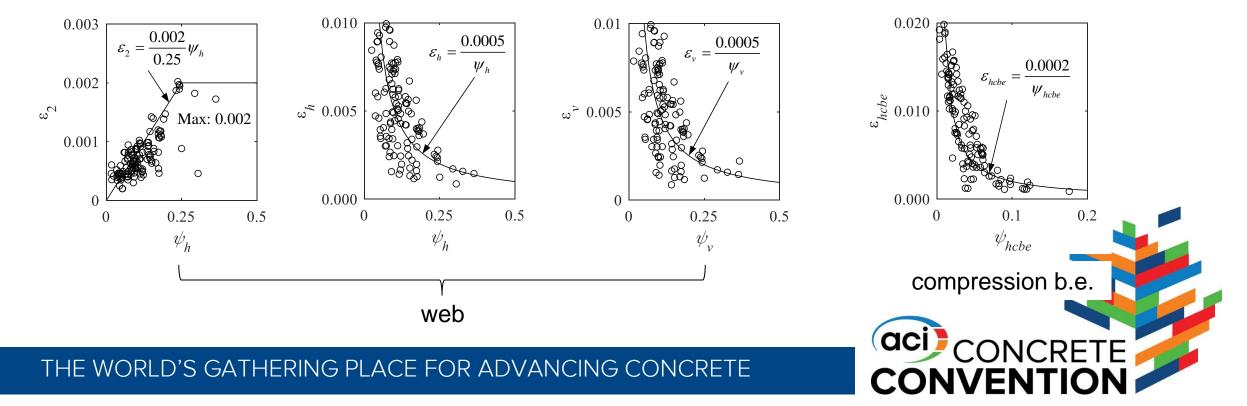
Fraction of shear resistance

Derivation of design shear equation from the analytical model

 $V_{proposed} = V_{web} + V_{cbe} + V_{tbe} = V_{web} + V_{cbe}$

From force equilibrium (MCFT),

$$v_{web} = (f_1 + \rho_h f_{sh}) \cot \theta$$
$$v_{cbe} = (f_1 + f_2) / (\tan \theta + \cot \theta)$$

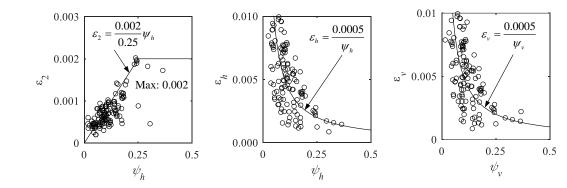

 f_1 = tensile stress of concrete f_2 = compressive stress of concrete ρ_h = horizontal reinforcement ratio in web f_{sh} = tensile stress of horizontal rebars θ = crack angle

$$V_{proposed} = v_{web}A_{web} + V_{cbe}A_{cbe}$$

Derivation of design shear equation from the analytical model

$$v_{web} = (f_1 + \rho_h f_{sh}) \cot \theta \qquad v_{cbe} = (f_1 + f_2) / (\tan \theta + \cot \theta)$$

Strains at the maximum strength of walls (from analytical model)



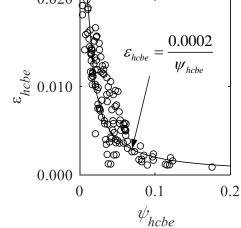
 v_{web} (shear strength of web at failure) = $v_c + v_s$

$$v_{web} = v_c + v_s = \left(f_1 + \rho_h f_{sh}\right) \cot \theta = \left(\frac{0.33\sqrt{f_c'}}{1 + \sqrt{500\varepsilon_1}} + \rho_h E_s \varepsilon_h\right) \cot \theta$$
$$\cot \theta = \sqrt{\frac{\varepsilon_h + \varepsilon_2}{\varepsilon_v + \varepsilon_2}} \approx \sqrt{\frac{\psi_v}{\psi_h}} = R_{vh}$$

$$v_{c} = \frac{0.33\sqrt{f_{c}}}{1 + 0.5\sqrt{\frac{1}{\psi_{v}} + \frac{1}{\psi_{h}}}} R_{vh} \quad (\psi_{h} > 0 \text{ and } \psi_{h} > 0)$$

$$v_s = \rho_h E_s \frac{0.0005}{\psi_h} R_{vh} \le \rho_h f_{yh} R_{vh} \quad (\psi_h > 0 \text{ and } \psi_h > 0)$$

 f_c' = compressive strength of concrete ψ_v = normalized vertical reinforcement ratio ($\rho_v f_{yv}/f_c$ ') ψ_h = normalized horizontal reinforcement ratio ($\rho_h f_{yh}/f_c$ ') R_{vh} = simplified crack angle



 v_{cbe} (shear strength of compression b.e.)

$$v_{cbe} = (f_1 + f_2) / (\tan \theta + \cot \theta) = f_2 / (\tan \theta + \cot \theta) = \frac{f_c'}{0.8 + 170\varepsilon_1} / (\tan \theta + \cot \theta)$$

$$\cot \theta = \sqrt{\frac{\varepsilon_h + \varepsilon_2}{\varepsilon_v + \varepsilon_2}} = \sqrt{\frac{0.0002 / \psi_{hcbe} + 0.002}{0.002}} = \sqrt{0.1 / \psi_{hcbe} + 1}$$

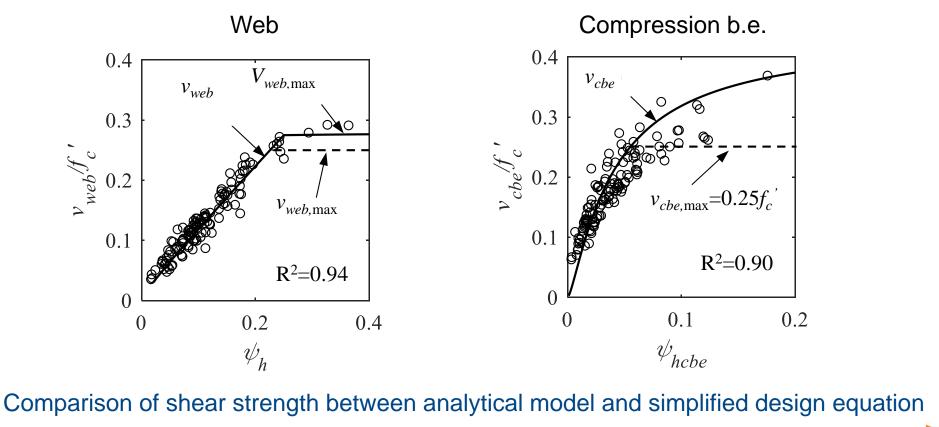
$$v_{cbe} = \frac{f_c'}{0.8 + 170\varepsilon_1} / (\tan \theta + \cot \theta) = \frac{f_c'}{1.14 + 0.034 / \psi_{hcbe}} \frac{\sqrt{1 + 0.1 / \psi_{hcbe}}}{2 + 0.1 / \psi_{hcbe}}$$

Summary of $V_{proposed} = v_{web}A_{web} + v_{cbe}A_{cbe}$

$$v_{web} = v_c + v_s$$

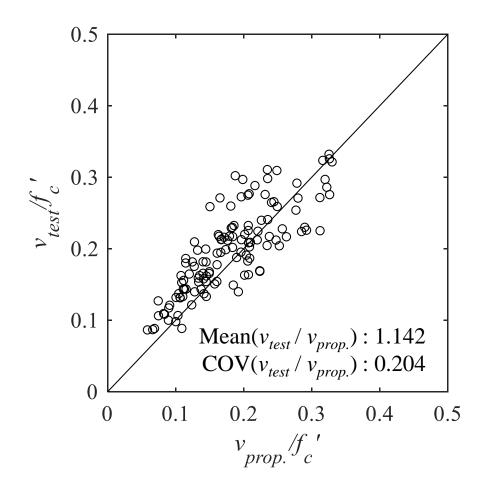
$$v_c = \frac{0.33\sqrt{f_c'}}{1 + 0.5\sqrt{\frac{1}{\psi_v} + \frac{1}{\psi_h}}} R_{vh} \quad (\psi_h > 0 \text{ and } \psi_h > 0)$$

$$v_s = \rho_h E_s \frac{0.0005}{\psi_h} R_{vh} \le \rho_h f_{yh} R_{vh} \quad (\psi_h > 0 \text{ and } \psi_h > 0)$$


Inputs:

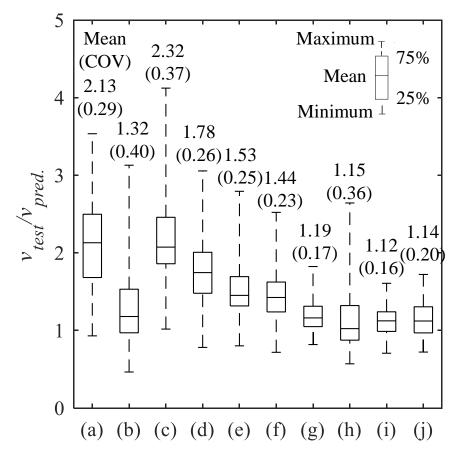
- sectional area (web and b.e.)
- material strength (f_c', f_y)
- reinforcement ratio (ρ)

$$v_{cbe} = \frac{f_c'}{1.14 + 0.034 / \psi_{hcbe}} \frac{\sqrt{1 + 0.1 / \psi_{hcbe}}}{2 + 0.1 / \psi_{hcbe}}$$


Implementation

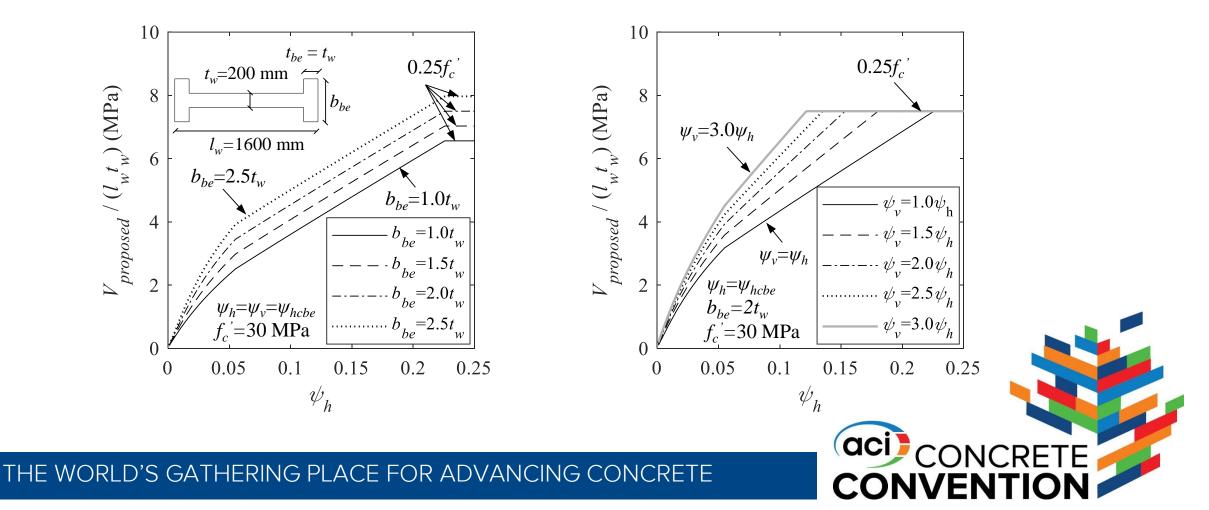
ac

CRFTF


Validation

Prediction method	Analytical model (v_{test}/v_{model})	Proposed equation (<i>v_{test}/v_{prop.}</i>)	
Mean	1.124	1.142	
Standard deviation	0.177	0.233	
COV	0.157	0.204	
Minimum	0.706	0.721	
Maximum	1.607	1.722	

CONVENTION


Evaluation of the predictability of the existing models

- (a) Wood (1990)
- (b) Moehle (2015)
- (c) Luna and Whittaker (2019)
- (d) ACI 318-19 (2019)
- (e) Barda et al. (1977)
- (f) ASCE/SEI 43-05 (2005)
- (g) Gulec and Whittaker (2011)
- (h) Kassem (2015)
- (i) Iterative analytical model (present study)
- (j) Simplified design equation (present study)

Parametric investigation

The proposed equation Incorporates the shear strength contribution of boundary element & vertical rebars

Summary and Conclusions

- A mechanics-based model was developed to predict the shear strength of squat walls built with boundary elements.
- The model was validated with 123 experimental specimens and generated strains and stresses to understand the contribution of individual components to overall shear strength.
- Attention should be paid to boundary elements, which contribute 42% to total shear strength, but tension boundary elements can be neglected for design convenience.
- Both horizontal and vertical reinforcement ratios affect shear strength, and the provision of ACI 318-19 ignoring vertical reinforcement should be revised.
- Analytical model and simplified design equations showed comparable results with measured capacities and reduced v_{test} / v_{pred} ratio.

References

- ACI. 2019. Building code requirements for structural concrete (ACI 318-19) and commentary, American Concrete Institute Committee 318, Farmington Hills, MI.
- ACI. 2013. Code requirements for nuclear safety-related concrete structures (ACI 349-13) and commentary, American Concrete Institute Committee 349, Farmington Hills, MI.
- ASCE/SEI. 2005. Seismic design criteria for structures, systems, and components in nuclear facilities (ASCE/SEI 43-05), American Society of Civil Engineers, Reston, VA, 15.
- Barda, F., Hanson, J. M., and Corley, W. G. 1977. Shear strength of low-rise walls with boundary elements, Reinforced Concrete Structures in Seismic Zones (SP-53), N. M.
 Hawkins and D. Mitchell, eds., American Concrete Institute, Farmington Hills, MI. 149-202.
- Bentz, E. C., Vecchio, F. J., and Collins, M. P. 2006. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements, ACI Structural Journal, 103(4), 614-624.
- Gulec, C. K., and Whittaker, A. S. 2011. Empirical equations for peak shear strength of low aspect ratio reinforced concrete walls, ACI Structural Journal. 108(1), 80-89.
- Kassem, W. 2015. Shear Strength of Squat Walls: A strut-and-tie model and closed-form design formula, Engineering Structures, 84, 430-438.
- Kim, J. H. and Park, H. G. 2020.11. Shear and shear-friction strengths of squat walls with flanges. ACI Structural Journal, 117(6), 269-280.
- Kim, J. H. and Park, H. G. 2022.03. Shear strength of flanged squat walls with 690 MPa reinforcing bars. ACI Structural Journal, 119(2), 209-220.
- Luna, B. N., Rivera, J. P., and Whittaker, A. S. 2015. Seismic behavior of low-aspect ratio reinforced concrete shear walls, ACI Structural Journal, 112(5), 593-604.
- Moehle, J. 2015. Seismic design of reinforced concrete buildings, McGraw-Hill Education, 760.
- Vecchio, F. J., and Collins, M. P. 1986. The modified compression-field theory for reinforced concrete elements subjected to shear, ACI Journal Proceedings, 83(2), 219-231.
- Wood, S. L. 1990. Shear strength of low-rise reinforced concrete walls, ACI Structural Journal, 87(1), 99-107.

