

TRADE-OFF ANALYSIS TO IMPROVE CONCRETE PAVEMENT SUSTAINABILITY BY OPTIMIZING DESIGNS

April 2023 ACI Concrete Convention, San Francisco, CA

James Mack, P.E. Director, Market Development – Infrastructure CEMEX

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

MUCH OF THE CURRENT SUSTAINABILITY FOCUS IS ON EPDs, REDUCING "EMBODIED EMISSIONS" & USING LOW CARBON CONSTRUCTION MATERIALS

Buy Clean Policies

Procurement policy that incentivize the purchase of construction materials and products with lower embodied greenhouse gas (GHG) emissions.

Low CO₂ Concrete Mix Designs

JUST AS IMPORTANT IS WHAT WE BUILD

Optimizing pavement designs can lowers costs and environmental impacts

• Cost and CO₂ emissions for 1 mile of Pavement, 2 lanes in each direction (+ middle turn lane) and 2 inner/2 outer shoulders

• Original JPCP Rehabilitation schedule based on CALTRANS LCCA manual. Optimized JPCP Rehabilitation schedule based on Pavement-ME / MEPDG results

TOOLS FOR OPTIMIZING DESIGNS FOR THE PAVEMENT SYSTEM

Optimizing designs balances the initial costs/impacts, life cycle costs/impacts & performance

TOOLS

1 AASHTO Pavement ME Design Procedure Predicts pavement performance over the analysis period

2 Life Cycle Cost Analysis (LCCA)

Determines which pavement design is most cost effective over the analysis period

3 Life Cycle Assessment (LCA)

Determines which pavement design is most "sustainable" over the analysis period

Pavement ME tells how different pavements will perform & the LCCA / LCA helps designers make trade-offs to find cost-effective & environmentally responsible designs

PAVEMENT ME IS THE MOST ADVANCED DESIGN PROCEDURE

Covers a wide range of applications, including nearly all new & rehabilitation options Can account for new and diverse materials and various failure mechanisms

State-of-the practice design procedure based on advanced models & actual field data collected across the US and Canada

- Adopted by AASHTO in 2011
- Calibrated to more than 2,400 asphalt & concrete pavement test sections, ranging in ages up to ~40+ years

Based on mechanistic-empirical principles that account for site specific:

- Traffic
- Climate
- Materials
- Proposed structure (layer thicknesses and features)

Provides estimates of performance during the analysis period

Can match rehabilitation activities to performance

New Pavement

- Asphalt Concrete (AC)
- Jointed Plain Concrete Pavement (JPCP)
- Continuously Reinforced Concrete Pavement (CRCP)

Overlays & Restoration

- AC over AC
- AC over JPCP / CRCP (w/ & w/o fracture)
- Bonded PCC over JPCP / CRCP
- Unbound PCC over JPCP / CRCP
- JPCP /CRCP over AC
- JPCP Restoration

PAVEMENT ME DEFINES A SPECIFIC PAVEMENT'S PERFORMANCE

Predicting performance for key distresses allows for trade-off analysis of Features with Life Cycle Analysis

Red Line – Predefined Distress Threshold Value. When major rehabilitation is needed (i.e. patching & DG or overlay).

Black Dashed Line - The 50% Reliability (most likely) level of distresses predicted

Blue Dotted Line - The predicted distresses at the Specified Reliability Level (i.e. 90%). Designs are based on when this line hits the defined distress limit

Design life is when the Blue Reliability curve hits red Predefined Threshold Value (~33 years in this case)

PAVEMENT ME DEFINES A SPECIFIC PAVEMENT'S PERFORMANCE

Predicting performance for key distresses allows for trade-off analysis of Features with Life Cycle Analysis

Red Line – Predefined Distress Threshold Value. When major rehabilitation is needed (i.e. patching & DG or overlay). Black Dashed Line - The 50% Reliability (most likely) level of distresses predicted

Blue Dotted Line - The predicted distresses at the Specified Reliability Level (i.e. 90%). Designs are based on when this line hits the defined distress limit

Design life is when the Blue Reliability curve hits red Predefined Threshold Value (~33 years in this case)

PAVEMENT ME DEFINES A SPECIFIC PAVEMENT'S PERFORMANCE

Predicting performance for key distresses allows for trade-off analysis of Features with Life Cycle Analysis

Red Line – Predefined Distress Threshold Value. When major rehabilitation is needed (i.e. patching & DG or overlay).

Black Dashed Line - The 50% Reliability (most likely) level of distresses predicted

Blue Dotted Line - The predicted distresses at the Specified Reliability Level (i.e. 90%). Designs are based on when this line hits the defined distress limit

Design life is when the Blue Reliability curve hits red Predefined Threshold Value (~33 years in this case)

PAVEMENT ME ALLOWS FOR COMPARISONS OF DIFFERENT DESIGNS

Combining performance with the LCCA / LCA finds the design that best balances the costs, sustainability impacts, and performance over the full life cycle

PAVEMENT ME ALLOWS FOR COMPARISONS OF DIFFERENT DESIGNS

Pavement ME gives a repeatable, un-biased process that shows how a specific pavement design will perform

- 10 -

DESIGN IMPROVEMENTS FOR CONCRETE PAVEMENTS

Each Design Feature must balance Performance and Cost (both initial & long term)

Feature	Benefit or Options
Shorten Joint Spacing	Reduces curling & warping stresses (reduces thickness but does increase joint sawing and dowel costs)
Use 13-ft Widened Outside Lanes	Shifts loading to "interior loading" (reduces thickness)
Use Dowels / Increase Dowel Size	Increases load transfer, reduces bearing stress reduces faulting
Change Shoulder Design	Tied Concrete vs AC vs RCC; reduced /tapered thickness; no dowels; different mix, etc. (improves edge support)
Optimized aggregate gradation	Reduces cement content, creates denser mix, less shrinkage
Use different concrete mixes	Mainline vs shoulder mixes, 2-layer construction
Change base type	Granular vs asphalt treated vs cement treated, reduce thickness, dense graded vs permeable; subgrade / chemical stabilization
Use single 1/8"-wide single saw cut and filled (not sealed)	Removes second sawing operation and reduces noise
Use Longitudinal tining or Next Generation Concrete Surface (NGCS)	Reduces noise

"Features" have a significant impact on performance & cost

CURRENTLY DESIGN IS DONE IN A "STATIC" MODE Designs are developed and then compared to select the final pavement design

Doing a LCCA/LCA at the end misses opportunities to make design changes

TO IMPROVE THE PAVEMENT DESIGNS

Need to create a link between Design and Evaluation in an iterative design process

TO IMPROVE THE PAVEMENT DESIGNS

Need to create a link between Design and Evaluation in an iterative design process

ROUTE 67 IN RAMONA, CA Falls within the *South Coast* CALTRANS climatic region

Route 67 in Ramona, CA (at Route 78 junction)

- Moderate volume road:
- 35-mph urban road
- 2 lanes in each direction (+ middle turn lane)
- 2 inner/2 outer shoulders
- Daily traffic: 23,400 (ADTT = 1,357)
- Initial ESAL = 335,000 / year
- 20-year Design Life / 55-year Analysis Period

CALTRANS **Concrete Design** 9.6" JPCP w/ 1.25" Dia Dowels 4.8" LCB (Lean Concrete Base) 7.2" Agg Subbse Subgrade JPCP new construction:

JPCP new construction: Design life = 20-years, Maintenance Level = 1,2,3

- 2% Patch & DG at year 25,
- 4% Patch & DG at year 30
- 6% Patch & DG at year 40
- 3" Asphalt overlay in year 45 (10-year life)

CALTRANS Asphalt Design

HMA new construction:
Design life = 20-years,
Maintenance Level = 1,2
3" AC Overlay in years 20,

- Mill / 4" ACOL in year 25
- Mill / 3" ACOL in year 35
- Mill / 4" ACOL in year 45
- Mill / 3" ACOL in year 50
 (5-year life)

ESTIMATED COST AND ENVIRONMENTAL IMPACT FOR STANDARD CALTRANS PAVEMENT DESIGNS

Route 67 - Ramona, CA

CALTRANS Concrete Design				CALTRANS Asphalt Design		
9.6" JPCP		LCCA (NPV \$/mile)	LCA (tons CO ₂ e/mile)	6.6" Ty-A HMA		LCCA (NPV \$/mile)
w/ 1.25" Dia Dowels	Initial Const.	\$3,147,585	3,954		Initial Const.	\$2,278,102
	Pavement	\$2,229,803	2,860	10.6" Agg Base	Pavement	\$1,437,480
4.8" LCB	LCB	\$644,902	781	AB-Class 2	AB-Class 2	\$522,262
(Lean Concrete Base)	Agg Subbase	\$272,880	313		Agg Subbase	\$318,360
7.2" Agg Subbase	Rehabilitation	\$911,663	479	8.4" Agg Subbase	Rehabilitation	\$1,104,504
	Carbonation		(123)			
	PVI-Deflection		604			
Subgrade	PVI-Roughness		1,912	Subgrade		
	Total	\$4,059,248	6,826		Total	\$3,382,606

Asphalt is 38% lower in Initial Costs and 20% lower in Life Cycle Costs

Caltrans Concrete Design: From Table 623.1E (South Coast/Central Coast, Type II SG Initial AADTT = 1,357 / day, 4% Compound Growth (Initial ESAL = 335,000 / yr) 20 Yr ESALs = 10,650,000; 50 Yr ESALS = 51,151,000

Route 67 PAVEMENT-ME PREDICTED PERFORMANCE IS HIGH Faulting, Cracking, & IRI are well below terminal levels for the entire analysis period

Pavement is over-designed because it does not need rehabilitation for the entire 50-year analysis period Creates the opportunity for project specific optimization

OVER-DESIGN CREATES THE OPPORTUNITY FOR OPTIMIZATION & POTENTIAL TO LOWER COST AND ENVIRONMENTAL IMPACT Each design feature needs need to balance performance, cost & environmental impact

Features Evaluated

- Iterated Concrete Thickness
 - 9.0"
 - 8.5"
 - 8.0
- Removed 4.8" Lean Concrete Base
 - Accounts for 20% of the initial construction costs & GWP
 - Performance history shows that aggregate bases have worked in similar applications
- Iterated Aggregate base thickness
- Develop rehabilitation activities based on Pavement-ME distresses

8.5" JPCP MEETS PERFORMANCE CRITERIA Good balance between long term performance and low cost / low GWP

- Performance curves show all the pavement options
 evaluated exhibited good performance
 - Cracking not an issue until the pavement is at 8.5-inch or less.
 - Faulting and IRI are well below unacceptable levels for all cases
- 8.0-inch pavement met the 20-year design life
- 8.5-inch JPCP design chosen as optimized design
 - Cracking hits terminal level at year 45
 - Good balance between long term performance (and a hedge against increased traffic) and low cost / low GWP

Optimization does not mean choosing the Thinnest (cheapest) Pavement Its about selecting the most Effective

Ist rehabilitation for that given pavement

Pavement-ME Predicted Performance

PROJECT SPECIFIC PAVEMENT OPTIMZATION LOWERS COST AND ENVIRONMENTAL IMPACT

CALTRANS Concrete Design	Optimized Concrete Design		Original CALTRANS Schedule		Optimized Pavement-ME Design	
	8.5" IDCD		LCA (tons CO ₂ e)	LCCA (NPV \$)	LCA (tons CO ₂ e)	LCCA (NPV \$)
w/ 1.25" Dia Dowels	w/ 1.25" Dia Dowels	Initial Const.	3,954	\$3,147,585	3,063	\$2,256,638
	Contained the Asternation of the State	Pavement	2,860	\$2,229,803	2,803	\$2,021,307
4.8" LCB (Lean Concrete Base)	6.0" Agg Subbse	LCB Agg Subbase	781 313	\$644,902 \$272,880	 260	 \$235,331
7.2" Agg Subbse		Rehabilitation	479	\$911,663	54	\$315,798
	CER AND AND	Carbonation	(123)		(87)	
Subgrade	Subgrade	PVI-Deflection	604		704	
		PVI-Roughness	1,912		2,110	
	7	Total	6,826	\$4,059,248	5,844	\$2,572,437

Optimization reduced the initial construction GWP by 890 tons (22.5%) and the life cycle GWP by 980 tons (14.3%)

Optimization reduced the initial construction costs by \$890k (28.3%) and the life cycle cost \$1.48M (36.6%)

Caltrans Concrete Design: From Table 623.1E (South Coast/Central Coast, Type II SG Initial AADTT = 1,357 / day, 4% Compound Growth (Initial ESAL = 335,000 / yr) 20 Yr ESALs = 10,650,000; 50 Yr ESALS = 51,151,000

SUMMARY

1 Current Sustainability efforts focus on EPDs and using low carbon construction materials

2 Just as important is "what you build"

- Over design raises Initial Embodied CO₂ levels
- Under design will increase operational and maintenance CO₂ levels
 - Both making hitting US has Greenhouse Gas Emissions Targets difficult
- **3** Pavement Optimization can be used to lower Life Cycle Costs & Environmental Impacts
 - They will still have good long-term performance
 - When done correctly, they will have low Cost of Ownership & low Environmental Impacts
- 4 Pavement Optimization requires a "trade off analysis" that balances the costs, environmental impacts, and pavement performance / future rehabilitation activities
 - It is more than just cutting thickness
 - Other "features" have a significant impact on performance, cost and environmental impacts

Thank You

& Any Questions?

Jim Mack jamesw.mack@cemex.com Office: 713-722-6087 Cell: 713-598-6669

NEED TO USE A FORWARD LOOKING INDICATOR TO DISTINGUISH HOW DIFFERENT PAVEMENT SEGMENTS ARE PERFORMING

Remaining Service Interval (RSI) is one possible forward looking time element

Definition	 RSI tells HOW LONG and HOW WELL to A RSI=10 means 10 years to next control A RSI=0 means that its condition is a "Treatment" can be anything from reconstruction for the segment 	the pavement will serve the public Instruction treatment for that segment worse than the agency's defined trigger value In preservation activities (i.e. crack sealing) to full
What it does	 Two pavement sections at the same condition are not necessarily equal They will require different management strategies RSI takes into account "rate of deterioration" Higher RSI pavements / networks deliver higher value than lower RSI networks 	(Intial Const. or Last Treat.

RSI provides insight into future conditions and impact of different investment strategies