

Assessing Deterioration of Concrete Structures using Self-Sufficient Reactive-Transport Modeling

O. Burkan Isgor and W. Jason Weiss

Acknowledgements

Dr. Vahid Jafari Azad Post-doctoral researcher (currently Senior Engineer at WSP)

> Dr. Qin Pang Post-doctoral researcher (currently Researcher at PNNL)

Dr. Deborah Glosser

Ph.D. student, Post-doctoral researcher (currently, Assistant Professor at UWW)

Oregon State University

College of Engineering

Dr. Keshav Bharadwaj Ph.D. student, Post-doctoral researcher

ACI Spring 2023 – San Francisco (Isgor / Weiss 2023)

Concrete sustainability

Concrete sustainability

Increase the use of low-carbon footprint cementitious materials and powder extenders

- Oregon State University College of Engineering
- We have been using conventional (in-spec) SCMs, some limestone, etc.
- Time to consider
 - \circ underutilized, novel, low-carbon footprint binders
 - Off-spec SCMs (off-spec fly ash, natural pozzolans, slag, etc.
 - Other types of ashes (bottom ash, reclaimed ash, agricultural ash, etc.)
 - Other industrial and natural products (pumice, clays, etc.)
 - Increased use of powder extenders
 - Larger limestone replacement
 - Synergies with binders (e.g., limestone + Al-containing binders)

Challenges

Photo 44066082 © Luchschen | Dreamstime.com Photo 43874974 © Alexander Levchenko | Dreamstime.com

- Do we know how these unconventional binders react?
 - Maximum reactivity (portion of the reactive components)?
 - Reactions vs. time
- Do we know how to proportion mixtures with these unconventional binders?
 - For specified performance
 - For cost
 - For lowest carbon footprint
 - Etc.

Performance-based mixture proportioning Bharadwaj et al. 2022

- Can we perform service life modeling of concrete produced with these materials?
 - Modeling transport of deteriorative species (e.g., chlorides, sulfates, etc.)
 - Modeling reactive processes (e.g., chloride binding, sulfate attack, salt damage, etc.)
 Service life modeling

(this presentation)

Reactions (e.g., chloride binding, sulfate attack, carbonation, etc.)

$$\underbrace{-D_{i} \nabla c_{aq,i}}_{\text{lonic flux}} - \underbrace{D_{i} c_{aq,i}}_{\text{lonic flux}} \frac{Fz}{RT} \nabla \emptyset - \underbrace{D_{i} c_{aq,i} \nabla ln \gamma_{i}}_{\text{homical}} + \underbrace{c_{aq,i} v_{L} + c_{G,i} v_{G}}_{\text{lonic flux}} + \underbrace{D_{i} fusion}_{\text{migration}} + \underbrace{Fillectrical}_{\text{migration}} + \underbrace{Chemical}_{\text{activity}} + \underbrace{Advection}_{\text{homical}} + \underbrace{Chemical}_{\text{activity}} + \underbrace{Chemical}_{\text{migration}} + \underbrace{Chemical}_{\text{migration}}$$

Reactive-transport modeling

Reactive-transport modeling

(e.g., chloride binding, carbonation, etc.)

Reactive-transport modeling

"Self-sufficient" model

(using kinetic/thermodynamic modeling)

Isgor and Weiss, Materials & Structures, 2019 Azad et al., Computer & Geosciences, 2016

MPPM: Modified Pore Partitioning Model (Powers + GEMS) up-scaled to concrete

Time marching

How do we move from "empirical" to "selfsufficient"?

EXAMPLE:	
INPUT	OUTPUT
1000 g OPC + 400 g H ₂ O	???gofC-S-H
425 g C ₃ S 325 g C ₂ S 80 g C ₃ A 70 g C₄AF	C-S-H-1, C-S-H-2, etc. ??? g of CH ??? g of AFm
30 g Na ₂ O 20 g K ₂ O	AFm1, AFm2, etc 1,400 g ??? g of AFt
50 g gypsum (CaSO ₄)	AFt1, AFt2, etc. ??? pore solution
Etc.	Ca+2, Na+, K+, etc.

Kinetic/thermodynamic modeling

Reactivity

Pozzolanic Reactivity Test (PRT)

Glosser et al. 2019, 2020, 2021

PRT

Bharadwaj et all. 2022

ACI Spring 2023 – San Francisco (Isgor / Weiss 2023)

Kinetics

Glosser et al. 2019, 2020, 2021

Kinetics

OPC + Silica fume

Glosser et al. (2020) "Non-Equilibrium Thermodynamic Modeling Framework for Ordinary Portland Cement/Supplementary Cementitious Material Systems," ACI Mat. J., 117(6): 111-123

Modified Pore Partitioning Model for Concrete

Bharadwaj et al. 2019, 2020

MPPM - Porosity

Model Predicted Porosity (Vol. %)

MPPM - Formation Factor

Validation

Thermodynamically calculated chloride binding isotherms:

(Isgor and Weiss, Materials and Structures, 2019)

(Azad et al., Computer & Geosciences, 2016)

Azad et al., Computer & Geosciences, 2016

Validation / benchmarking

ACI Spring 2023 – San Francisco (Isgor / Weiss 2023)

An application

High temperature (85°C), high pressure (14.7 psi), supercritical CO_2 , complex brine chemistry

Source: NETL

An application

Ideker,. Isgor, et. al. (2014)

An application

~1000 years to achieve ~1 m of deterioration

Corrosion of the casing and the leakage though cement-plug/steel interface is the main concern

Azad et al., Computer & Geosciences, 2016

Conclusion

Increase the use of low-carbon footprint cementitious materials and powder extenders

- Modeling reactive transport processes in concrete for predicting service life is possible irrespective of
 - Chemical composition of the materials
 - Reactivity of the materials
- We can do this using a coupled approach in which we model reactive processes using thermodynamic / kinetic algorithms and transport processes using finite element analysis.
- This approach eliminates the need to experimentally characterize every concrete mixture for modeling, hence it is dubbed "self-sufficient".
- This approach allows the modeling of concrete produced with underutilized, novel, low-carbon footprint binders and powder extenders.

Oregon State University

College of Engineering

O. Burkan Isgor Burkan.Isgor@oregonstate.edu W. Jason Weiss Jason.Weiss@oregonstate.edu