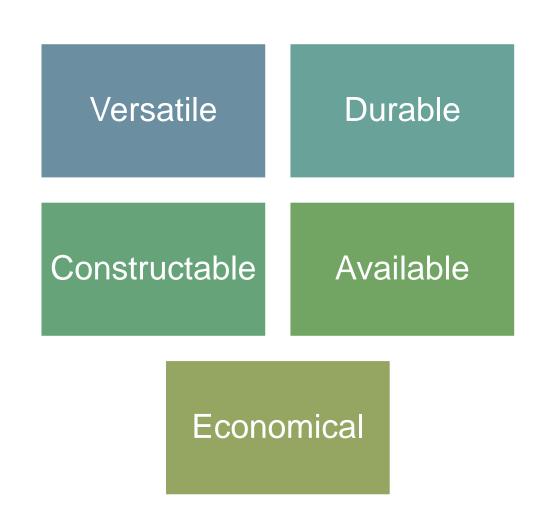


American Concrete Institute

Always advancing

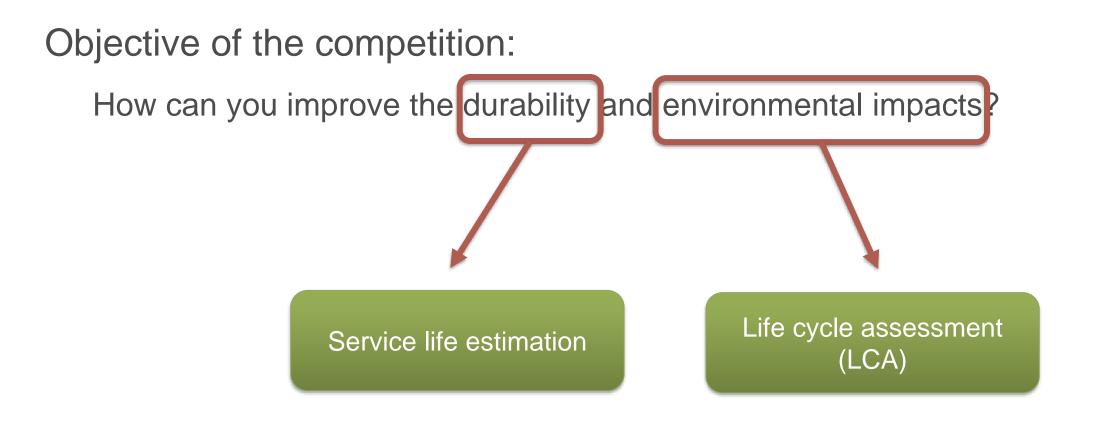
Life Cycle Assessment in Concrete Mix Design: Lessons from the Eco Concrete Competition


Hessam Azarijafari, Ph.D. Deputy Director, Concrete Sustainability Hub Massachusetts Institute of Technology (MIT)

ACI San Francisco Convention

04/03/2023

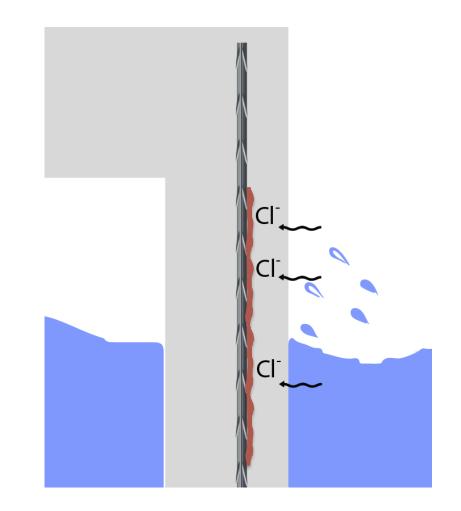
Concrete is the most commonly used building material ... for good reason


- Global cement production
 ~ 4 billion tons per year.
- Concrete production is about 30 billion tons per year

How should we evaluate the sustainability aspect of the of concrete?

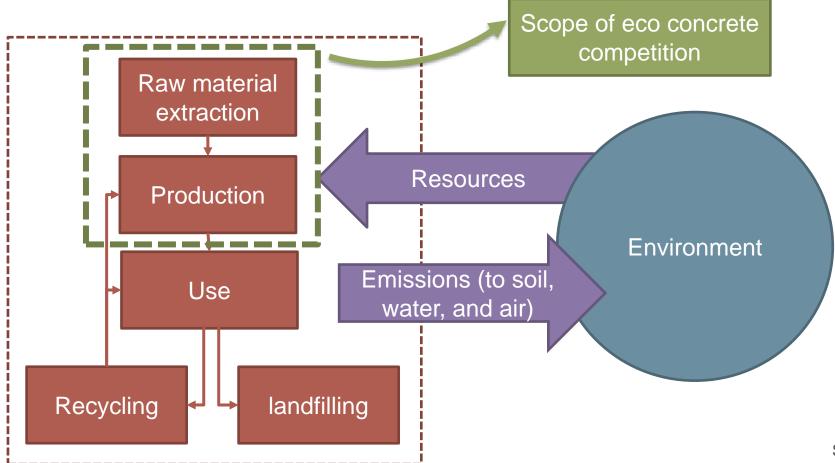
How can we mitigate the environmental impacts?

ACI Eco concrete Competition was developed to promote the environmental performance in concrete mix design as an important aspect of sustainability

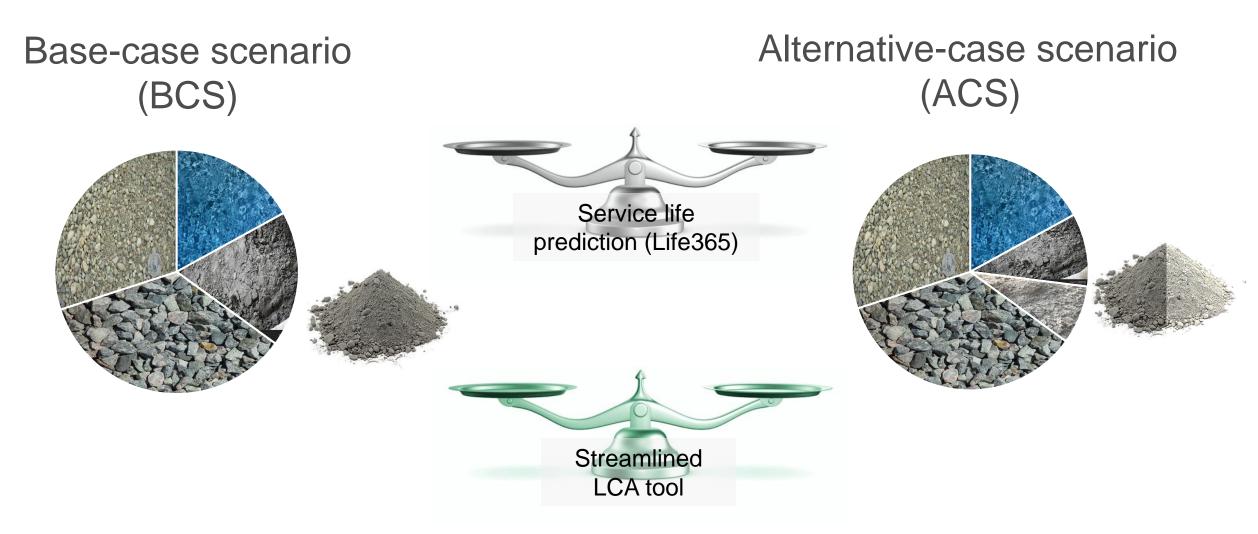

How do we estimate the service life of concrete mixtures?

 Long-term chloride penetration resistance of concrete mixtures is simulated based on their critical chloride content in time.

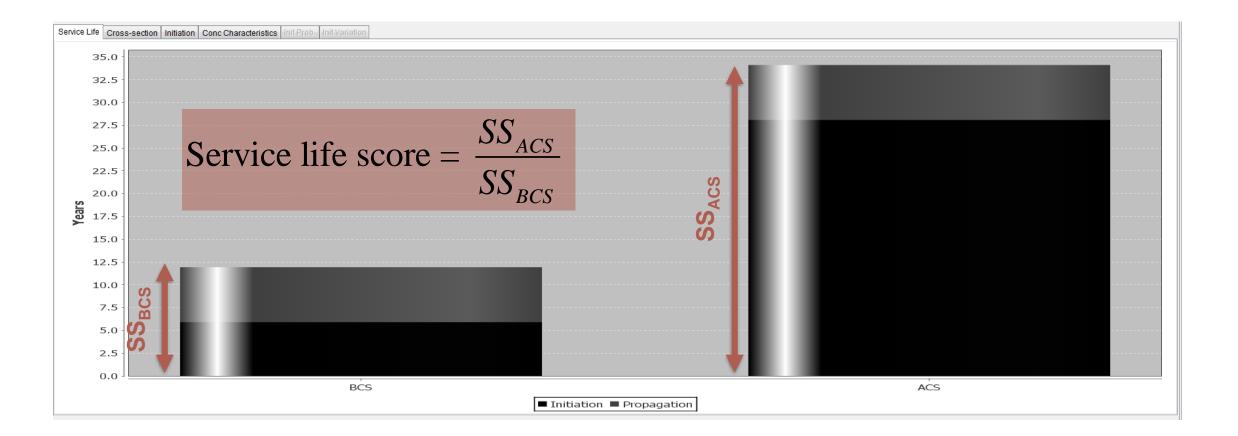
 Life-365[™] software is considered to estimated the service life of concrete mixtures based on the corrosion initiation time.



Software download: <u>http://www.life-365.org/</u>



How do we calculate the environmental impacts of concrete?


Life cycle assessment (LCA) is a quantitative method for assessing of the potential environmental impacts of any products (e.g., concrete) during its life cycle.

What should we design and evaluate in the eco concrete competition?

Service life simulation and Ratio calculation

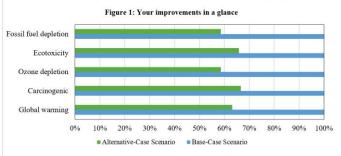
Section 2.5 of the ECOCONCRETE STUDENT COMPETITION 2021 rules: https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-RulesFinal.pdf

How do we do LCA in the eco concrete competition?

Streamlined LCA tool was developed in 2017 for this competition

	ident Competition e Scenario concrete apter							
Run calculations Last calculation update: 2017-03-13 1) Input insertion								
Base-Case concrete m	ix design							
Components	Category	Subcategory	Amount kg/m ³					
Cementitious Materials an								
Type 1 (GU) Portland Cemer	t Cement	Main-Product	400					
+ Aggregates								
Sand	Fine aggregates	Crushed	900					
- 5-10mm aggregate	Coarse aggregates	Crushed	1000					
+ Water								
Water#1		Tap water	170					
+ Admixtures								
Admixtures #1								
Amount required for the production of 1	kg of material	Total amount	2470					
Distance between the origin of the materi	al and the batching plant (your university)	Total binder content	400					
		Water-to-binder ratio	0.40 0%					

EcoConcrete Student Competition Summarv Developped by ACI Sherbrooke Student Chapte 2) results Table 1 : Base- and Alternative-Case **Base-Case** Mix characteristics Unit Scenario scenario Density kg/m³ 2470 2470 Total binder content (b) kg/m3 100 400 $b_{BCS} = b_{ACS}$ Water-to-binder ratio (w/b) 0.40 0.40 $w/b_{BCS} = w/b_{ACS} = 0.43$


Table 2 : Details of the potential environmental impact scores and variation

40%

Maximum 40%

Cement substitution rate

Impacts categories	Units	Base-Case Scenario	Alternative-Case Scenario	Potential environmenta impact reduction
Global warming	kg CO _{2 eq}	366.973	231.749	36.8%
Carcinogenic	CTUh	0.000	0.000	33.3%
Ozone depletion	kg CFC-11 eq	1.55E-05	9.10E-06	41.5%
Ecotoxicity	CTUe	596.460	392.430	34.2%
Fossil fuel depletion	MJ	142.815	83.578	41.5%
			Average	: 37.5%

Performances	Units	Weigthing factor	Results
Written report	%	0.30	100.0%
Poster presentation	%	0.10	100.0%
Compressive strength	MPa	0.15	50.0
Electrical resistivity	kΩ*cm	0.20	254.0
Environmental impact reduction	%	0.25	37.5%
	Final score	/100	84.4%

Download: https://www.concrete.org/Portals/0/Files/Excel/EcoConcrete-CalculationTool.xlsm

Life cycle assessment shall be conducted by the streamlined LCA tool designed for this competition

Step 1) After mixtures definition:

- A. Materials suppliers shall be identified in your city.
- B. Transportation distances shall be presented on a map.
- C. Transportation distances from the supplier to university shall be calculated.

Mix de	esign de	Т	ranspo defini			
Eco Concrete Stude	-					
Designing Base-Case S Developped by ACI Sherbrooke Student Chapter	cenario concrete			Transp	ort ²	
reveloppea by ACI Snerorooke Student Chapter				Road	Rail	Waterwa
Run calculations Go!	2017-03-13 00:29			km	km	km
Base-Case concrete mix de	esign					
Components	Category	Subcategory	Amount kg/m ³			
Components Cementitious Materials and fille	<u> </u>	Subcategory	kg/m-			
Type 1 (GU) Portland Cement	Cement	Main-Product	400			
+ Aggregates						
Sand	Fine aggregates	Crushed	900			
- 5-10mm aggregate	Coarse aggregates	Crushed	1000			
+ Water						
Water#1		Tap water	170			
+ Admixtures						
Admixtures #1						
Amount required for the production of 1 kg of m	aterial	Total amount	2470			
Distance between the origin of the material and t	he batching plant (your university)	Total binder content Water-to-binder ratio	400 0.40			
Distance between the origin of the material and t						

Streamlined LCA tool instruction:

https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-CalculationTool-Instructions.pdf

Slide 9

Step 3) Check if all the parameters were inserted correctly (all the boxes are

Potential environmental **Base-Case** Alternative-Case **Impacts categories** Scenario impact reduction Units Scenario Global warming kg CO_{2 eq} 366.973 36.8% 231.749 Carcinogenic CTUh 0.000 0.000 33.3% Ozone depletion kg CFC-11_{eq} 1.55E-05 9.10E-06 41.5% Ecotoxicity CTUe 596.460 392.430 34.2% Fossil fuel depletion MJ 142.815 41.5% 83.578 Average: 37.5% Figure 1: Your improvements in a glance Fossil fuel depletion Ecotoxicity Ozone depletion Carcinogenic Global warming 80% 40% 70% 0% 10% 20% 30% 50% 60% 90% 100%

Alternative-Case Scenario

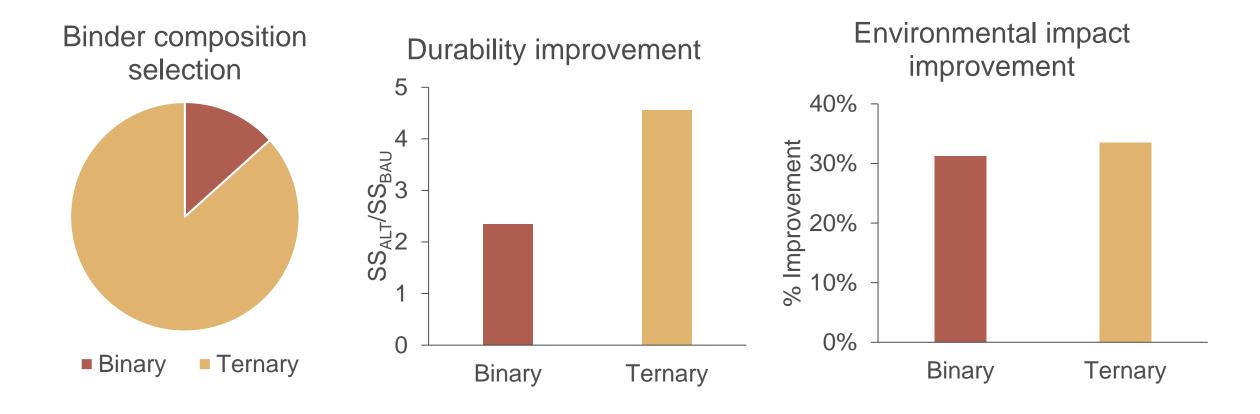
Base-Case Scenario

Table 2 : Details of the potential environmental impact scores and variation

Streamlined LCA tool instruction:

green)

https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-CalculationTool-Instructions.pdf


Score = 20% report + 30% presentation + 25% durability + 25% LCA

Submission requirement by the deadline:

- PDF report
- YouTube link of the recorded video
- Excel tool (including the calculated LCA results)
- Saved file of the Life-365 results (JSON format)

Lessons learned: Ternary mixtures considerably improve the durability and environmental performance of mixtures

Combination of Fly Ash, Slag, and Silica Fume

Lessons learned: Recycled materials and transportation needs to be

 Neglecting the energy consumption of recycled materials (crushing, grinding, and sieving the materials)

2) Overlooking the transportation of material from the quarry to the plan

Not satisfying the minimum content of aggregates in both mix designs

Part of the last winners' video recording

Three version of this competitions has happened so far because of the following

- ACI Staff:
 - Student, Faculty & Young Professional Activities Coordinator
- ACI Committee Chairs:
 - S801 Student Competition
 - 130 Sustainability of Concrete
- Tens of volunteers:
 - Report and Video Reviewers
 - Interview Judges

A contribution from ACI Committee 130, Sustainability of Concrete

The Eco Concrete Competition

Lessons learned by (and from) students

by Hessam Azarijafari, Julie K. Buffenbarger, and Sean Monkman

Previous experiences of eco concrete competition <u>https://www.concrete.org/students/studentcom</u> <u>petitions/ecoconcretecompetition.aspx</u>

Thank you! Hessam@mit.edu

Step 1) Definition of concrete element geometry in the "Project" tab in Life-365™

Life-365 v2.2.3 <new pro<="" th=""><th>ject> - December 17, 2020</th></new>	ject> - December 17, 2020									
Project Settings										
Current Project	Project Exposure Concrete Mixtures Individual Costs Life-Cycle Cost Service Life Report LCC Report									
Save project Save project as Close project Export project data	Identify Project Title "TEAM NAME" Description Default settings for a new project									
Steps	Select Structure Type and Dimensions									
Define project Define alternatives Define exposure Define mix designs Compute service life	Type of structure slabs and walls (1-D) Thickness (mm) 200.0									
Define project costs Compute life-cycle cost	Reinf. depth (mm) 50.0 200.00 mm									
Settings										
Help for this window Set default values About Life-365™	Area (square m) 5									
Tips	> Volume of concrete 1.0 cub. met.									
This is the description of each alternative.	Chloride concentration units % wt. conc.									
To modify a description shown,	Life-365 will model service									
double-click on the description itsef.	Base year 2020 Analysis period (yrs) 100 Inflation									
	Define Alternatives (up to 6)									
	Add a new alt Dele									
	Name (double-click to edit)									
	BCS A project that uses the normal mix of concrete ACS A project that uses the a new mix of concrete									

Software download: <u>http://www.life-365.org/</u>

Section 2.5 of the ECOCONCRETE STUDENT COMPETITION 2021 rules: <u>https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-RulesFinal.pdf</u>

Step 2) Definition of local condition in the "Exposure" tab in Life-365™

🛓 Life-365 v2.2.3 <new pro<="" th=""><th>ject> - December 1</th><th>7, 2020</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></new>	ject> - December 1	7, 2020																		
Project Settings																				
Current Project	Project Exposure C	oncrete Mixtures Individu	al Costs Life-Cycle Co	st Service Life	e Report LC	C Report														
Save project Save project as	Select Method for Sett	ing External Concentration	n and Temperature Pro	ofile																
Close project	Ose defaults	Location Flori	da				▼ 8	Sub-location	ТАМРА							- Exp	osure Mar	rine spray z	one	
Export project data	🔘 Set values manual	lly (below)								_										
Steps	Chloride Exposure (au	itomatically set)																		
Define project Define alternatives												Sui	face (Conce	ntratio	n				
Define exposure	Max Concentration			1.0																
Define mix designs Compute service life	Manual		1.000 % wt. conc.	0.9		/														
Define project costs Compute life-cycle cost	O ASTM C1556		▼ % wt. conc.	0.8		/														
Settings	Add new	Editset	Delete	0.7 · 0.6 ·		/														
Help for this window	Time to Max			wt. c.	/															
Set default values About Life-365™	Years to build to max	surface concentration	10.0	[№] ^{0.4}																
Tips				0.3																
				0.2	/															
				0.1	/															
				0.0 1) 5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
														Yea	ar					

Step 3) Definition of mix design in the "Concrete Mixtures" tab of Life-365™

🛓 Life-365 v2.2.3 <new proj<="" th=""><th>ject> - December 17, 2020</th><th></th><th></th><th></th><th></th><th></th></new>	ject> - December 17, 2020								
Project Settings									
Current Project	Project Exposure Concrete Mix	tures Individual Costs Life-Cycle	Cost Sen	vice Life Report LCC	Report				
Save project Save project as Close project				T	ype: slabs and walls (1-D) Calculate	e service life			
Export project data	Define Concrete Mixtures (select	a mix to edit its properties)							
Steps	Name	User Defined		D28 (m*m/sec)	m	Ct (% wt. conc.)			
Define project	BCS	no		7.9433E		0.050			
Define alternatives	ACS	no		3.4810E	3.4810E-12 0.43				
Define exposure		that uses the normal mix of concre	te)						
Define mix designs	Mixture			Rebar					
Compute service life	w/cm		0.40	Rebar steel type	Black Steel				
Define project costs Compute life-cycle cost	Class F fly ash (%)		0.00%	Rebar % vol. concre	t e	3.00%			
Settings	Slag (%)		0.00%	Inhibitor					
Help for this window Set default values	Silica fume (%)		0.00%		<none></none>	•			

Binder percentage shall be exactly defined based on constituents of BCS and ACS mixtures

Section 2.5 of the ECOCONCRETE STUDENT COMPETITION 2021 rules: https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-RulesFinal.pdf

Results should be presented in two format: written report and Video recording

1. Written Report

- PDF format (check the due date from the competition rule documents)
- No more than 20 pages
- Don't forget the illustration of maps and results!
- Discussion of results and how they can be applied in large scale

2. Video recording

- No longer than 7 minutes
- Presentation of all team members is a plus
- Slides should innovatively discuss the results and calculation process

Results validation should be done to assure satisfying all the competition criteria

Step 2) Check if all the parameters were inserted correctly (all the boxes are green)

EcoConcrete Student Competition

Summary

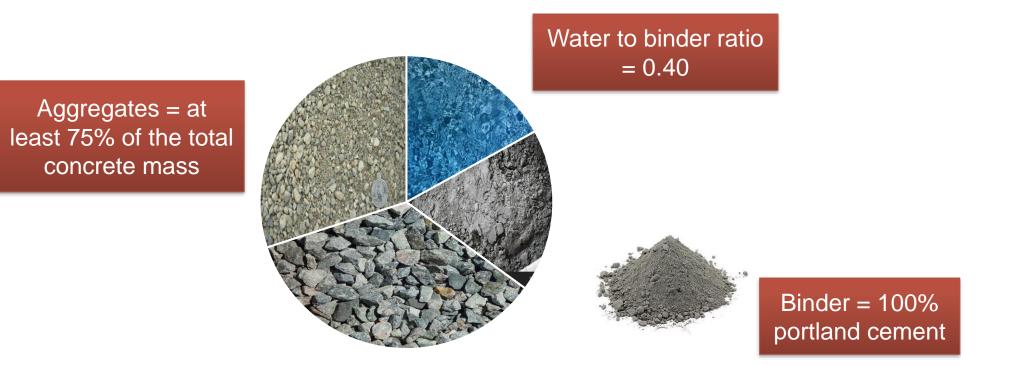

Developped by ACI Sherbrooke Student Chapter

Table 1 : Base- and Alternative-Case Scenarios charcateristics								
		Base-Case	Alternative-Cas	e				
Mix characteristics	Unit	Scenario	Scenario	Note				
Density	kg/m³	2470	2470					
Total binder content (b)	kg/m³	400	400	$b_{BCS} = b_{ACS}$				
Water-to-binder ratio (w	//b)	0.40	0.40	$w/b_{BCS} = w/b_{ACS} = 0.40$				
Cement substitution rate	e %	0%	40%	Maximum 40%				

Streamlined LCA tool instruction: https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-CalculationTool-Instructions.pdf


Rules of competition for material selection and mix designs for the Base-case scenario (BCS)

The design should correspond to a local structural concrete practice.

Rules of competition for material selection and mix designs For the Alternative-case scenario (ACS)

The volume of aggregates and binders shall be equal to those in the BCS mixture

Section 2 of the ECOCONCRETE STUDENT COMPETITION 2021 rules: https://www.concrete.org/Portals/0/Files/PDF/EcoConcrete-RulesFinal.pdf are allowed.