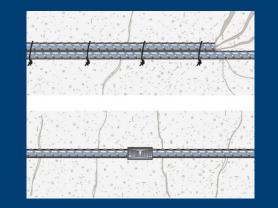
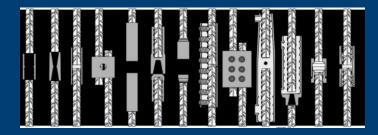


American Concrete Institute

Tensile Performance of GFRP Bars Connected with FRP Couplers

Jenna Hays, Undergraduate Researcher Dr. Ben Dymond, Faculty Mentor




Reinforcing Bars in Concrete Structures

- Used to increase concrete strength in tension
 - Often steel material
 - Corrodes over time

- Mechanical couplers to connect spans
 - More efficient than splicing
 - Reduces congestion
 - Varying connection options

GFRP Reinforcing Bars and Couplers

- Glass fiber reinforced polymer (GFRP) reinforcing bars
 - Corrosion resistant
 - Lightweight
 - Brittle

• FRP mechanical couplers to bars

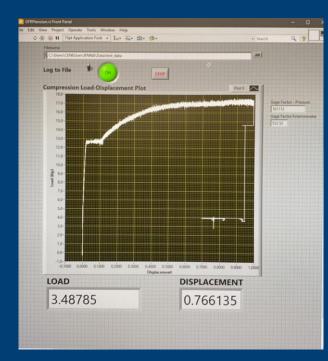
- Limited research on best connection options or products
- ACI Center of Excellence for Nonmetallic Building Materials (NEx)
 - RFP for testing and acceptance criteria

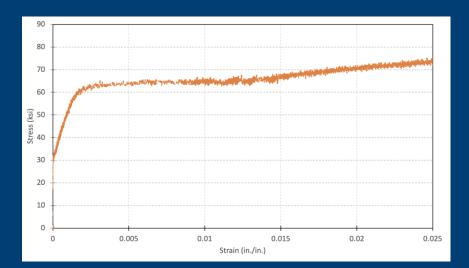
Previous Research

- "Shear Bolt Couplers for Splicing FRP Bars" [1]
 - Supported the viability of GFRP bars in substructure applications
 - Coupler failure at 60% guaranteed tensile strength of GFRP bar

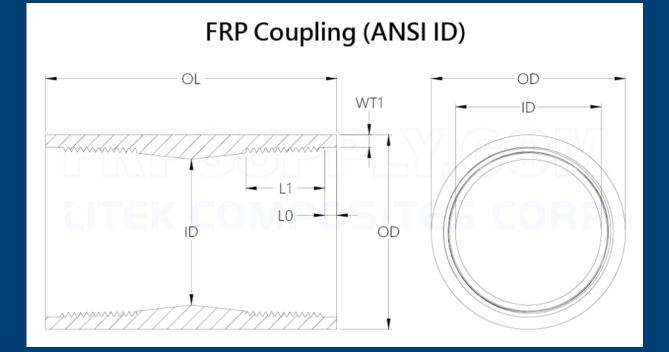
[1] N. Kiani and A. Nanni, "Shear Bolt Couplers for Splicing FRP Bars," American Concrete Institute Concrete Convention, Orlando, 2022.

Project Objectives


Investigate performance of reinforcing bar-and-coupler connections


Bars:	Steel	GFRP	GFRP	GFRP
Coupler:	Steel	Epoxy-Coated	FRP	FRP
Bolts:	Steel	Steel	Fiberglass	Stainless Steel
<u>19.19</u>		TRR.RRE	TTTT	

Methods: Overview


Tension Testing

Load vs. Displacement

Stress vs. Strain

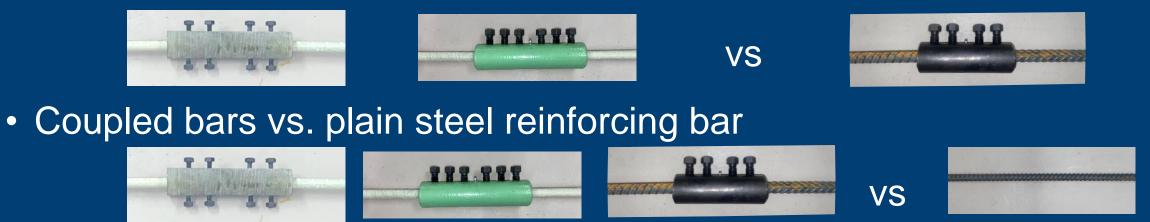
Methods: FRP Coupler

Methods: GFRP Coupler Fabrication

• GFRP bars, fiberglass coupler, fiberglass bolts

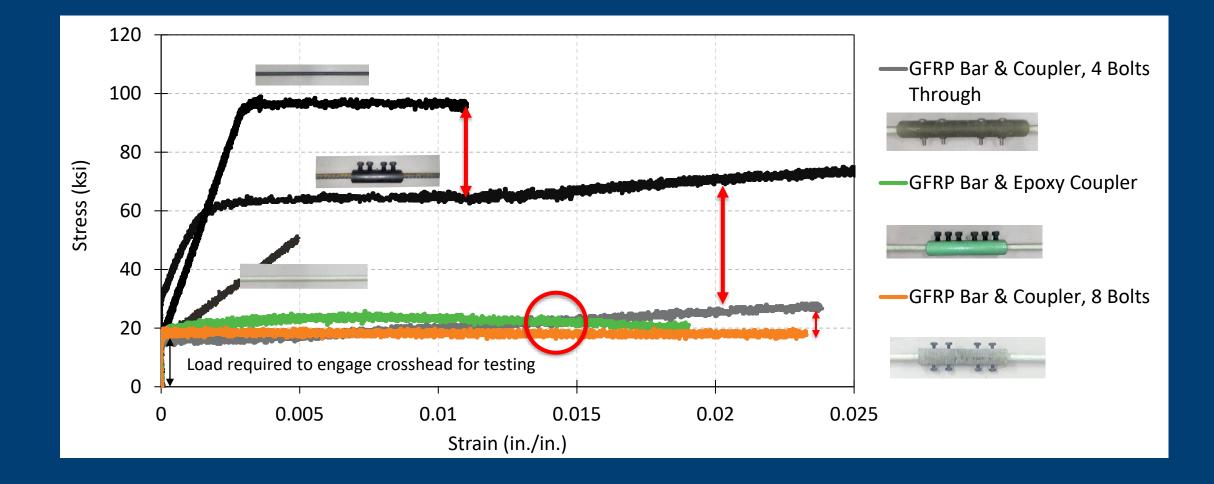
Methods: GFRP Coupler Fabrication

• GFRP bars, fiberglass coupler, stainless steel through-bolts



Results: Overview

- Investigate performance of reinforcing bar-and-coupler connections
 - Corrosion-resistant coupled bars vs. steel coupled bars


• Steel: coupled strength >1.25 of bar yield strength (ACI 318)

25.5.7 *Mechanical and welded splices of deformed bars in tension or compression*

25.5.7.1 A mechanical or welded splice shall develop in tension or compression, as required, at least $1.25f_y$ of the bar.

Results: Stress-Strain

Results: Bar-and-Coupler Connections

Steel Bar

Steel Bar and Steel Coupler

GFRP Bar and Epoxy Coupler

Load: 19.5 kips Stress: 97.5 ksi Failure: N/A

16.5 kips 82.5 ksi Bar

6.0 kips 25.8 ksi Connection

Results: Bar-and-Coupler Connections

GFRP Bar

GFRP Bar & FRP Coupler 8 Bolts

GFRP Bar & FRP Coupler 4 Bolts Through

Load: 33.7 kips* Stress: 145 ksi * Failure: Grips

4.7 kips 20.2 ksi Connection

6.6 kips 28.4 ksi Bolts

*Tensile strength reported from manufacturer due to testing failure at grips

Summary & Future Research

Coupler strength performance results

- Steel bar > coupled steel bars
- Coupled steel bars > coupled corrosion-resistant systems
- FRP coupler with bolts through > epoxy coupled bars, FRP coupler with 8 bolts
- Low strength of corrosion-resistant coupler systems
- Using mechanical couplers to connect spans
 - Finalize coupler-to-GFRP bar connection options
 - Industry standards for testing and acceptance
 - Availability \rightarrow off-the-shelf nonmetallic couplers

Thank you

- Jenna Hays, Undergraduate Researcher
- Dr. Ben Dymond, Faculty Mentor (ben.dymond@nau.edu)

